固相萃取-超高效液相色谱-串联质谱法同时测定 贝类产品中脂溶性贝类毒素

柴继业¹, 王 琳¹, 赵巧灵², 黄朱梁², 史西志^{1*}, 孙爱丽¹, 李德祥¹ (1.宁波大学 海洋学院, 浙江 宁波 315211; 2.舟山市食品药品检验检测研究院, 浙江 宁波 316021)

摘要:建立基于氧化石墨烯的 Spin-mini 固相萃取小柱样品净化-超高效液相色谱-串联质谱同时 测定贝类产品中脂溶性贝类毒素的方法.样品采用 V(甲醇):V(乙醇):V(异丙醇)=7:2:1 振荡提取, 经氧化石墨烯 Spin-mini 固相萃取小柱净化,并利用超高效液相色谱-串联质谱法进行检测,外标 法定量.大环内酯类贝类毒素-2(PTX2)、米氏裸甲藻毒素(Gymnodimine, GYM)线性范围为 3.0~ 30.0 μg·kg⁻¹,原多甲藻酸贝毒(Azaspiracids, AZA1、AZA2、AZA3)线性范围为 0.75~10.0 g·kg⁻¹,螺 环内酯毒素(13-Desmethyl Spirolide C, SPX1)线性范围为 3.0~40.0 μg·kg⁻¹,相关系数均大于 0.9901,方法检测限范围为 0.10~0.26 μg·kg⁻¹,定量限范围为 0.28~0.81 μg·kg⁻¹.在贝类样品基质 中 6 种脂溶性贝类毒素 3 个添加水平的平均回收率为 82.5%~115.7%,相对标准偏差为 0.9%~ 14.3%.该方法具有操作时间短、有机溶剂用量少、灵敏度高、回收率和稳定性较好等优势,适 用于贝类样品中多种脂溶性贝类毒素残留的检测与确证.

关键词: 脂溶性贝类毒素; 超高效液相色谱-串联质谱法; 石墨烯; 固相萃取 中图分类号: O657.63 ________文献标志码: A ______文章编号: 1001-5132 (2018) 03-0065-07

近年来,由于海水富营养化和气候变化导致 有害藻华(赤潮)的发生,严重威胁海洋渔业资源、 海水养殖业和海洋生态系统^[1],尤其是许多海洋赤 潮藻类可产生毒素并在贝类体内累积,受到毒素 污染的贝类产品被消费者食用后可危害人体内的 消化系统、神经系统和心血管系统,导致人体中毒, 甚至死亡^[2-4].

脂溶性贝类毒素由于其亲脂性、半衰期较长, 在滤食性贝类,如扇贝、贻贝、蛤、牡蛎和蛤蜊等 贝类中很容易被富集,造成腹泻、胃肠道不适等反 应,其残留严重威胁水产品安全及消费者健康,对 贝类养殖者造成巨大的经济损失^[5-9].因此,为保 障水产品安全及公众健康,许多国家建立了脂溶 性贝类毒素的最大残留限量(MRL),如欧盟已设立 的监管限制,原多甲藻酸贝毒(AZAs)总最大残留 限量为 160.0 μg·kg⁻¹,大环内酯类贝类毒素-2 (PTX2) 的最大残留限量为 160.0 μg·kg⁻¹, 螺环内酯毒素 (SPXs)还未限定^[10-11].

目前,常用的脂溶性贝类毒素检测方法主要 有小鼠分析法、酶联免疫分析法、荧光衍生液相色 谱法和液相色谱-质谱法等^[12-15].自 2011 年起,为 了更好地对主要脂溶性贝类毒素残留进行监控, 基于高效液相色谱串联质谱(LC-MS/MS)法已成为 欧盟许多国家的参考方法,该方法灵敏度高、定量 准确、选择性好,是较为理想的贝类毒素分析方法. 然而,由于贝类样品中的脂溶性贝类毒素属于不 同化学性质的化合物,通常同时提取和纯化比较 困难,因此有效的前处理方法是实现 LC-MS/MS 精确分析的前提^[16-19].固相萃取(Solid Phase Extraction, SPE)具有萃取效率高、重现性好、回收 率高等优点,是较为高效的样品前处理技术^[20-22]. 但是传统的 SPE 技术费时,需要专业人员和专用实

基金项目:国家自然科学基金(31372572);海洋公益性行业科研专项(201305010);浙江省食品药品监管系统科技计划项目(2015002); 宁波市科技创新团队项目(2015C110018);宁波大学学科项目(XKZSC1515,XKZSC1412).

第一作者: 柴继业(1992-), 男, 安徽阜阳人, 在读硕士研究生, 主要研究方向: 食品安全. E-mail: chaijiye@163.com

收稿日期: 2017-11-17. 宁波大学学报(理工版)网址: http://journallg.nbu.edu.cn/

^{*}通信作者: 史西志 (1979 -), 男, 山东淄博人, 博士/教授, 主要研究方向: 水产品安全. E-mail: shixizhi@nbu.edu.cn

验设备等, 难以满足大批量样品的快速制备. 因此, 本研究根据固相萃取原理, 建立了基于氧化石墨 烯的离心式(Spin-mini)固相萃取小柱样品处理方法, 并对其上样、淋洗和洗脱条件进行优化, 减少了有 机溶剂的消耗, 提高了样品前处理的效率和检测 的准确度, 进而结合 LC-MS/MS 建立了适用贝类 样品中 6 种脂溶性贝类毒素的精确检测方法.

1 材料与方法

1.1 材料、试剂与仪器

本实验所用的贝类样品采自宁波近岸海域. 6 种标准毒素(PTX2、GYM、AZA1、AZA2、AZA3、 SPX1)购自 National Research Council, Halifax, NS, Canada; 乙腈: HPLC 级, 纯度>99.9%, 购自 Thermo Fisher Scientific, USA; 甲醇、异丙醇、丙酮 HPLC 级, 纯度>99.9%, 购自 Tedia Company, USA; 正己 烷: HPLC 级, 纯度>99.5%, 购自 Honeywell, USA; 乙醇: 分析纯, 纯度>99.7%, 购自中国医药集团总 公司; 氨水分析纯, 纯度 25%~28%, 无水硫酸镁 购中国医药集团总公司; 超纯水: ELGA 纯水仪制得, 电导率 \geq 18.2 MΩ; 氧化石墨烯购自 Nanoinnova Technologies Company, Spain.

Waters 超高液相系统(ACQUITY UPLC)和三 重四级杆串联质谱仪(XEVO-TQ),含电喷雾离子 源(ESI)和大气压化学电离源(APCI)(Waters, USA); 色谱柱: Waters XBridge C₁₈ Column (5.0 μm, 100.0 mm×2.1 mm i.d.);均质机(PT2000, Switzerland);冷 冻离心机(Type 3K-18, Sigma, Germany);涡旋振荡 器(SCILOGXE MX-S, Scilogex, USA);组织捣碎器 (IKA T-18, Ika, Germany);氮吹仪(N-EVAP-24, Oragnic Association, USA);超声波清洗仪(SK250H, 上海科导超声仪器有限公司).

1.2 方法

1.2.1 标准溶液的配制

准确称取适量的 PTX2、GYM、SPX1、AZA1、 AZA2、AZA3 贝类毒素标准品溶液,采用甲醇作为 溶剂,配制 PTX2、GYM、SPX1 标准工作液的质量 浓度为 200.0 μg·L⁻¹; AZA1、AZA2、AZA3 标准工作 液的质量浓度为 100.0 μg·L⁻¹, -20 冷冻保存.

1.2.2 样品前处理

将采集的贝类样品用清水洗净, 取出完整新

鲜的软组织, 放入均质机中, 8 000 r·min⁻¹ 均质 2 min, 将得到的样品放入-80 ℃ 保存.

准确称取(2.00±0.01)g 均质好的贝类样品于 15.0 mL 离心管中,加入 2.0 mL V(甲醇):V(乙醇): V(异丙醇)=7:2:1 提取液,涡旋震荡 30 s, 2 300 g 离 心 5 min,转移上清液于另一 15 mL 离心管中.按 照上述步骤重复提取 1 次.合并上清液,置于 -20 °C 冰箱,放置 2 h,取出上清液后迅速过脱脂 棉,将得到的滤液于 40 °C 下氮吹至近干,用 1.0 mL 30%甲醇水溶液溶解,待进样分析. 1.2.3 Spin-mini 固相萃取小柱

取 Spin-mini 空柱,在底部铺上筛板,装入 30.0 mg 氧化石墨烯,轻轻敲打使填料填充均匀, 上面加入筛板压平,即得到自制的 Spin-mini 固相 萃取小柱(图 1).

1 为上筛板; 2 为氧化石墨烯; 3 为下筛板; 4 为流出口.
 图 1 Spin-mini 固相萃取小柱

首先用 1.0 mL 甲醇活化, 清洗 Spin-mini 固相 萃取小柱, 然后用 30.0%甲醇水溶液平衡萃取柱, 上样 1.0 mL 后, 用 1.0 mL 30.0%甲醇水溶液淋洗, 3 000 g 离心 10 min, 然后加入 0.5 mL V(甲醇): V(乙醇):V(异丙醇)=7:2:1, 3 000 r·min⁻¹离心 10 min, 并收集洗脱液, 待进样分析.

1.2.4 脂溶性贝类毒素 UPLC-MS/MS 质谱分析

液相色谱条件 Waters XBridge C₁₈ 色谱柱 (5.0 μm, 100.0 mm×2.1 mm i.d.); 流动相为 0.15% 氨水(流动相 A)和甲醇(流动相 B). 柱温: 40 °C; 进 样量: 10.0 μL; 流动相: A 为 0.15% 氨水, B 为甲醇; 流速为 0.3 mL·min⁻¹. 洗脱方式: 梯度洗脱, 梯度 洗脱程序见表 1.

质谱条件离子源: 电喷雾离子源(ESI), 正离 子扫描; 检测方式: 多反应监测(MRM); 离子源温 度: 145 ; 脱溶剂温度: 450 ; 脱溶剂气流量: 750 L·h⁻¹; 锥孔气流量: 50 L·h⁻¹; 喷雾电压: 4000 V; 毛细管电压: ESI⁺为 3.5 kV、ESI⁻为 3.0 kV. 多反应 监测各贝类毒素锥孔电压、碰撞能量及离子对等质 谱条件见表 2.

表1 贝类毒素梯度洗脱程序

时间/min	流速/(mL·min ⁻¹)	A/%	B/%
初始	0.3	95.0	5.0
0.1	0.3	95.0	5.0
6.0	0.3	0.0	100.0
10.0	0.3	0.0	100.0
10.1	0.3	95.0	5.0
12.0	0.3	95.0	5.0

表2 6种脂溶性贝类毒素的质谱多反应监测模式的采集参数

主主	扫描	电离源	母离子	子离子	锥孔电	碰撞
毋糸	模式	模式	(m/z)	(m/z)	压/V	能/eV
GYM	正离子	$[M-H]^+$	508.2	162.2	60^*	45
				490.2	60	55
AZA1	正离子	$[M-H]^+$	842.5	806.7	44*	58
				824.8	44	46
AZA2	正离子	$[M-H]^+$	857.0	820.8	44*	56
				838.8	44	46
AZA3	正离子	$[M-H]^+$	828.5	810.8	40^{*}	48
				792.9	40	66
SPX1	正离子	$[M-H]^+$	692.6	164.2	74*	44
				674.5	74	28
PTX2	正离子	$[M-H]^+$	876.5	213.1	40^{*}	30
				823 5	40	30

注: *表示定量离子.

2 结果与分析

2.1 提取溶剂的选择

为了获得更高的质谱信号、较好的回收率和较高的样品制备效率,比较了甲醇、乙醇、异丙醇、 *V*(甲醇):*V*(乙醇):*V*(异丙醇)=7:2:1、*V*(甲醇):*V*(乙醇):*V*(乙醇):*V*(子丙醇)=2:7:1、*V*(甲醇):*V*(乙醇):*V*(子丙醇)=4.5:4.5:1 对 6 种脂溶性贝类毒素的提取效率, 结果如图 2 所示. 由图 2 可以知道,*V*(甲醇):*V*(乙醇):*V*(乙醇):*V*(异丙醇)=7:2:1 作为提取剂时,6 种脂溶性贝 类毒素的提取效率为 86.0%~102.6%,而其他溶剂 未能同时有效地提取所有6种脂溶性贝类毒素.因 此,选择 *V*(甲醇):*V*(乙醇):*V*(足丙醇)=7:2:1 作为提 取溶剂.

图 2 不同有机溶剂对 6 种贝类毒素提取效率的影响

2.2 Spin-mini 固相萃取小柱条件优化

采用氧化石墨烯作为 Spin-mini 固相萃取吸附 填料纯化样品时,目标化合物的纯化效率与上样 溶剂、淋洗溶剂及洗脱溶剂性质有关.因此,分别 采用 10.0%~50.0%甲醇/水溶液作为上样溶液,结 果如图 3 所示.从图 3 可知,用 10.0%~30.0%的甲 醇水溶液作为上样溶液时,流出液中未检测到脂 溶性贝类毒素;进一步用40.0%的甲醇水溶液作为 上样溶液时,流出液中检测到 PTX2 毒素,用 50.0%的甲醇水溶液作为上样溶液时,6 种毒素均 有检出.同时,实验发现,以 10.0%、20.0%、 30.0%、40.0%、50.0%的甲醇水溶液上样时,流出 液的颜色依次较深,说明色素同时得到较好的去 除.因此,综合分析优化结果,选择 30.0%的甲醇 水溶液作为上样溶液.

图 3 不同甲醇与水比例对 6 种贝类毒素回收率的影响

为进一步消除贝类样品粗提液中的游离脂肪酸和色素等样品基质,分析 1.0 mL 10.0%、20.0%和 30.0%的甲醇水溶液作为淋洗溶液时的净化效果,结果表明,30.0%的甲醇水溶液淋洗下来的溶液颜色较 10%和 20%的甲醇水溶液颜色深,表明 30.0%的甲醇水溶液具有更好的淋洗效果.同时,根据上样溶液优化结果,30.0%的甲醇水溶液不会将目标毒素淋洗下来而导致较低的回收率.因此,

67

第3期

为获得较好的净化效果,选择30.0%甲醇水溶液作 为淋洗溶液.

选择甲醇、甲醇碱性溶液(与流动相相同)和样 品前处理时混合提取溶剂(*V*(甲醇):*V*(乙醇):*V*(异丙 醇)=7:2:1)作为洗脱溶液,检测洗脱液中贝类毒素 的含量.当洗脱溶液的体积为 500.0 μL,相当于将 收集到的洗脱液中的贝类毒素的浓度浓缩 1 倍.每 个实验条件做 3 个平行实验,结果见表 3. 从表 3 可知,混合提取溶剂(*V*(甲醇):*V*(乙醇):*V*(异丙 醇)=7:2:1)具有最高的回收率(92.8%~102.9%)和精 密度(<10.9%).

2.3 色谱条件的选择优化

合适的色谱分离条件对于提高分辨率和降低 质谱检测时信号干扰有至关重要的影响.通常,碱 性流动相可以提供更好的灵敏度、准确性以及更低 的定量限和检测限.本研究采用 XBridge C₁₈ 色谱 柱(Waters, 5.0 μ m, 100.0 mm×2.1 mm i.d.)流动相为 0.15%氨水(流动相 A)和甲醇(流动相 B),通过梯度 洗脱的优化为脂溶性贝类毒素的分离提供足够的 分辨率.选择离子对中响应值较高离子用做定量 离子,优化串联质谱(MS/MS)参数,包括锥孔电 压、碰撞电压、定量离子和定性离子,结果见表 2. 同时,根据色谱条件,得到 6 种脂溶性贝类毒素的 色谱图(图 4), XBridge C₁₈色谱柱能够提供尖锐对 称的峰形,具有较好的分离效果.

2.4 方法学验证

选择牡蛎贝类对建立的 6 种脂溶性贝类毒素 的 Spin-mini SPE 结合 UPLC-MS/MS 检测方法进行 方法学验证.通过空白基质加标上样发现,在目标 毒素出峰时间没有干扰峰出现.

2.4.1 基质效应

开究采用 XBridge C₁₈ 色谱 基质中存在的干扰成分在目标分析物定量分表 3 3 种洗脱溶液脂溶性贝类毒素的回收率和相对标准偏差(RSD)

图 4 6 种脂溶性贝类毒素色谱图

第3期

毒素	线性范围	标准曲线	相关系数	牡蛎基质校正曲线	相关系数
PTX2	3.00~30.0	290.89 <i>x</i> +84.94	0.995 4	607.83 <i>x</i> +228.30	0.994 9
GYM	3.00~30.0	440.06 <i>x</i> +530.63	0.996 9	879.03 <i>x</i> +22.39	0.996 1
AZA1	0.75~10.0	18 992.40 <i>x</i> +1 763.67	0.998 8	16 195.80 <i>x</i> +754.52	0.996 7
AZA2	0.75~10.0	16 932.60 <i>x</i> +2 048.51	0.997 8	15 126.20 <i>x</i> +231.04	0.993 4
AZA3	0.75~10.0	8 927.14 <i>x</i> +26.68	0.998 7	7 537.16 <i>x</i> - 438.71	0.993 2
SPX1	3.00~40.0	1 072.30x - 1 355.53	0.999 6	1 089.99x - 206.06	0.994 4

析时,通常会产生基质增强或基质抑制效应,尤其 是由于离子源 ESI 在分析目标物质时具有较高灵 敏度, 会引起目标物定量重复或定量缺失, 导致回 收率过高或过低^[23-26].因此使用外标法和基质校 正曲线对基质效应进行评价.同时,由于基质效应 会因基质和贝类毒素的不同而出现差异,为评估 方法的稳定性、使用标准曲线和牡蛎样品两种不 同的基质校正曲线来评估,结果见表 4. 采用牡蛎 基质提取液配制 AZA1、AZA2、AZA3、SPX1 标 准溶液所绘制的标准曲线方程其斜率与标准品的 斜率之比均在 0.8~1.2 之间, 表明具有较小的基质 效应, 但 PTX2 和 GYM 均大于 1.2 和小于 0.8, 表 明存在明显的基质增强和减弱效应. 同时, 从表 4 可看出, 6 种贝类毒素在线性范围内呈良好的线性 关系,相关系数均大于0.9932.为保证实验的准确 性,避免基质效应带来的定量不准确影响,在检测 时仍需使用基质校正曲线来对毒素进行定量分析. 2.4.2 方法的灵敏度与精密度

采用不含毒素的贝类样品提取液逐级稀释 6 种贝类毒素标准溶液,根据定量离子色谱峰的信 噪比(S/N)为 10:1 时,对应的标准溶液质量分数作 为贝类毒素检测的定量限,为 0.28~0.81 μg·kg⁻¹; S/N 为 3:1 时,对应的标准溶液质量分数作为方法 的检测限,为 0.10~0.26 μg·kg⁻¹,结果见表 5. 在空 白牡蛎样品中添加 3 个质量分数水平的 6 种脂溶性 贝类毒素标准进行加标回收率实验,结果见表 6.

建立的基于 Spin-mini 固相萃取小柱结合 UPLC-MS/MS 检测脂溶性贝类毒素方法, 其准确 度和精确度是在 3 个加标浓度回收率和相对标准 偏差确定的. 6 种贝类毒素在空白牡蛎样品中的平 均回收率为 82.5%~115.7%, 且日内重现性和日间 重现性均低于 14.3%, 表明建立的方法具有较好的 准确度和精密度.

表 5 6种脂溶性贝类毒素的线性

节围 检测阳和空星阳

	记国、	1型/则取和足里胶	(µg·kg)
毒素	线性范围	检测限	定量限
PTX2	3.00~30.0	0.14	0.48
GYM	3.00~30.0	0.26	0.81
AZA1	0.75~10.0	0.18	0.45
AZA2	0.75~10.0	0.25	0.61
AZA3	0.75~10.0	0.12	0.33
SPX1	3.00~40.0	0.10	0.28

表 6 3 种贝类毒素的加标回收率及相对标准偏差

主主	添加质量分	日内重现	性(n=3)	日间重现性(n=9)	
母糸	数/(µg·kg ⁻¹)	回收率/%	RSD/%	回收率/%	RSD/%
PTX2	3.0	95.0	4.7	91.3	5.6
	6.0	103.6	4.9	101.3	8.8
	10.0	108.0	3.2	95.0	6.9
GYM	3.0	97.9	9.7	104.4	9.6
	6.0	106.8	7.7	103.7	4.9
	10.0	115.7	2.6	102.5	9.5
AZA1	1.5	91.1	6.7	94.0	8.7
	3.0	85.7	14.3	101.8	6.4
	5.0	82.5	11.3	98.1	9.8
AZA2	1.5	104.5	5.9	94.9	7.7
	3.0	102.8	4.7	97.0	3.1
	5.0	90.3	1.7	96.6	4.9
AZA3	1.5	93.4	12.8	97.2	5.6
	3.0	104.1	2.2	98.4	9.7
	5.0	108.6	5.6	103.8	5.1
SPX1	3.0	94.9	10.5	96.6	4.9
	6.0	89.6	8.6	89.5	10.3
	10.0	110.7	0.9	103.2	6.7

2.5 **实际样品的检测**

在宁波近岸海域采集紫贻贝(Mytilus edulis)、牡

(1 - 1 - 1)

个品种的贝类样品,采用所建立的方法来检测贝 类样品中脂溶性贝类毒素的浓度.结果表明,2 个 紫贻贝样品中 SPX1 有检出,质量分数分别为 0.3 $\mu g \cdot k g^{-1} 和 0.8 \mu g \cdot k g^{-1}; 2 个花蛤样品中 GYM 检出质$ $量分数分别为 0.78 <math>\mu g \cdot k g^{-1} 和 2.20 \mu g \cdot k g^{-1}, 质量分$ 数均低于欧盟最大残留限量,其他样品中未检测到贝类毒素残留.

3 结论

建立了基于氧化石墨烯的离心式 Spin-mini 固 相萃取小柱结合 UPLC-MS/MS 检测贝类样品中 6 种脂溶性贝类毒素的定量检测方法. 以氧化石墨 烯为吸附材料, 30.0%的甲醇水溶液作为上样溶液 和淋洗溶液, V(甲醇):V(乙醇):V(异丙醇)=7:2:1 作为 洗脱溶液, 6 种贝类毒素的回收率为 82.5%~115.7%, 相对标准偏差为 0.9%~14.3%, 检测限和定量限为 0.10~0.26 µg·kg⁻¹和 0.28~0.81 µg·kg⁻¹. 表明该方法具 有操作简单、有机溶剂消耗少、省时等优点, 且灵敏 度、重现性、回收率等指标均能满足脂溶性贝类毒素 分析的要求.

参考文献:

- [1] 李炳南,赵冬至,蒋雪中,等.赤潮灾害应急决策支持系 统的概念设计[J].海洋环境科学,2014,33(3):418-424.
- [2] 刘仁沿,刘磊,梁玉波,等.我国近海有毒微藻及其毒素的分布危害和风险评估[J].海洋环境科学,2016, 35(5):787-800.
- [3] 周磊,杨宪立,武爱波,等.麻痹性贝类毒素的安全评价与检测技术研究进展[J].世界科技研究与发展, 2014,36(3):336-342.
- [4] 谭志军,吴海燕,郭萌萌,等. 脂溶性贝类毒素安全评价与检测技术研究进展[J]. 中国水产科学,2013,20(2):
 467-479.
- [5] 李美慧,李爱峰,曹际娟,等.我国常见的几种脂溶性 贝毒的研究进展[J].生命科学,2016,28(1):33-43.
- [6] 陈建华,于仁成,孔凡洲,等.北黄海海域虾夷扇贝体 内脂溶性藻毒素分析[J].海洋与湖沼,2014,45(4): 855-863.
- [7] Li X, Li Z, Chen J, et al. Detection, occurrence and monthly variations of typical lipophilic marine toxins associated with diarrhetic shellfish poisoning in the coastal seawater of Qingdao City, China[J]. Chemosphere,

2014, 111:560-567.

- [8] Chen J, Li X, Wang S, et al. Screening of lipophilic marine toxins in marine aquaculture environment using liquid chromatography-mass spectrometry[J]. Chemosphere, 2017, 168:32-40.
- [9] Bosch-Orea C, Sanchis J, Farre M, et al. Analysis of lipophilic marine biotoxins by liquid chromatography coupled with high-resolution mass spectrometry in seawater from the Catalan Coast[J]. Analytical and Bioanalytical Chemistry, 2017, 409:1-12.
- [10] Hess P. Requirements for screening and confirmatory methods for the detection and quantification of marine biotoxins in end-product and official control[J]. Analytical and Bioanalytical Chemistry, 2010, 397(5): 1683-1694.
- [11] García-Mendoza E, Sánchez-Bravo Y A, Turner A, et al. Lipophilic toxins in cultivated mussels (*Mytilus galloprovincialis*) from Baja California, Mexico[J]. Toxicon, 2014, 90:111-123.
- [12] Rodríguez L P, González V, Martínez A, et al. Occurrence of lipophilic marine toxins in shellfish from Galicia (NW of Spain) and synergies among them[J]. Marine Drugs, 2015, 13(4):1666-1687.
- [13] Hess P, Butter T, Petersen A, et al. Performance of the EU-harmonised mouse bioassay for lipophilic toxins for the detection of azaspiracids in naturally contaminated mussel (*Mytilus edulis*) hepatopancreas tissue homogenates characterised by liquid chromate-graphy coupled to tandem mass spectrometry[J]. Toxicon, 2009, 53(7/8): 713-722.
- [14] Liu B H, Hung C T, Lu C C, et al. Production of monoclonal antibody for okadaic acid and its utilization in an ultrasensitive enzyme-linked immunosorbent assay and one-step immunochromatographicstrip[J]. Journal of Agricultural and Food Chemistry, 2014, 62(6):1254-1260.
- [15] Lian Z R, Wang J T. Study of molecularly imprinted solid-phase extraction of gonyautoxins 2, 3 in the cultured dinoflagellate *Alexandriumtamarense* by highperformance liquid chromatography with fluorescence detection[J]. Environmental Pollution, 2013, 182:385-391.
- [16] Mattarozzi M, Milioli M, Bianchi F, et al. Optimization of a rapid QuEChERS sample treatment method for HILIC-MS 2 analysis of paralytic shellfish poisoning (PSP) toxins in mussels[J]. Food Control, 2016, 60:138-145.
- [17] Kilcoyne J, Mccarron P, Twiner M J, et al. Epimers of azaspiracids: Isolation, structural elucidation, relative LC-MS response, and in vitro toxicity of 37-epi-azaspiracid-1[J].

Chemical Research in Toxicology, 2014, 27(4):587-600.

- [18] 吴海燕, 郭萌萌, 赵春霞, 等. 液相色谱-串联质谱法 筛查原多甲藻酸毒素及其代谢产物[J]. 色谱, 2016, 34(4):401-406.
- [19] 韩深, 王珮玥, 刘萤, 等. QuEChERS 净化技术结合超 高效液相色谱-串联质谱法筛查食用贝类中的 3 种原 多甲藻酸贝类毒素[J]. 色谱, 2013, 31(10):939-945.
- [20] Raterink R J, Lindenburg P W, Vreeken R J, et al. Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics[J]. TrAC Trends in Analytical Chemistry, 2014, 61:157-167.
- [21] 宿志伟,赵峰,刘远平,等.固相吸附毒素跟踪技术监测牡蛎养殖区中腹泻性贝毒[J].渔业科学进展,2016, 37(6):144-150.
- [22] 胡红美,郭远明,雷科,等.分散固相萃取净化-气相 色谱法测定水产品中氯霉素和氟苯尼考[J].食品科学, 2014,35(8):231-235.
- [23] Sjin C, Jang H, Jo H, et al. Development and validation

of an accurate and sensitive LC-ESI-MS/MS method for the simultaneous determination of paralytic shellfish poisoning toxins in shellfish and tunicate[J]. Food Control, 2017, 77:171-178.

- [24] Mccarron P, Reeves K L, Giddings S D, et al. Development of certified reference materials for diarrhetic shellfish poisoning toxins, Part 2: Shellfish matrix materials[J]. Journal of AOAC International, 2016, 99(5):1163-1172.
- [25] Shen Q, Gong L, Baibado J T, et al. Graphene based pipette tip solid phase extraction of marine toxins in shellfish muscle followed by UPLC-MS/MS analysis[J]. Talanta, 2013, 116:770-775.
- [26] Petrovic M, Hernando M D, Diaz-Cruz M S, et al. Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review[J]. Journal of Chromatography A, 2005, 1067(1):1-14.

A solid phase extraction-ultrahigh performance liquid chromatography-tandem mass spectrometry method for the determination of lipophilic marine toxins in shellfish

CHAI Ji-ye¹, WANG Lin¹, ZHAO Qiao-ling², HUANG Zhu-liang², SHI Xi-zhi^{1*}, SUN Ai-li¹, LI De-xiang¹

(1.School of Marine Sciences, Ningbo University, Ningbo 315211, China;

2. Zhoushan Institute for Food and Drug Control, Zhoushan 316021, China)

Abstract: A spin-mini solid phase extraction (SPE) based on the oxide graphene coupled with ultra performance liquid chromatography-electrospray ionization trap tandem mass spectrometry (UPLC-MS/MS) was developed to determine six lipophilic marine toxins (LPTs) in shellfish. Samples were firstly extracted with methanol: ethanol:isopropanol (7:2:1), purified with spin-mini solid phase extraction based on oxide grapheme. The analytes were analyzed by UPLC-MS/MS by an external standard method. The calibration curves of PTX2 and GYM showed good linearity in the range of $3.0-30.0 \,\mu\text{g·kg}^{-1}$. AZA1, AZA2, AZA3 showed good linearity in the range of $0.75-10.0 \,\mu\text{g·kg}^{-1}$. SPX1 showed good linearity in the range of $3.0-40.0 \,\mu\text{g·kg}^{-1}$, with relative standard deviations (RSDs) above 0.9901. The limits of detection (LODs) and limits of quantification (LOQs) were $0.10-0.26 \,\mu\text{g·kg}^{-1}$ and $0.28-0.81 \,\mu\text{g·kg}^{-1}$ respectively. The proposed method is efficient with low solvent consumption, high sensitivity, improved recovery and stability. The method can be used for the determination and verification of LPTs in shellfish.

Key words: lipophilic marine toxins; ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS); oxide-graphene; solid phase extraction

(责任编辑 史小丽)