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A B S T R A C T

Larimichthys crocea (LYC) holds significant economic value as a marine fish species. However, inaccuracies in
labeling its origin can adversely affect consumer interests. Herein, a laser assisted rapid evaporative ionization
mass spectrometry (LA-REIMS) and machine learning (ML) was developed for geographical authentication.
When compared to iKnife, the LA demonstrated to be superior owing to reduced thermal damage to sample
tissue, enhanced automation, and ease of use. Analysis of LYC from six distinct geographical origins across China
revealed a total of 798 ions, which were then subjected to six classifiers to establish ML models. Following
hyperparameter optimization and feature engineering, the Chi2(15%)-KNN model exhibited the highest training
and testing accuracy, achieving 98.4 ± 0.9% and 98.5 ± 1.4%, respectively. This LA-REIMS/ML methodology
offers a rapid, accurate, and intelligent solution for tracing the origin of LYC, thereby providing valuable
technical support for the establishment of traceability systems in the aquatic product industry.

1. Introduction

In recent years, the authenticity of geographical food origins has
garnered increasing attention due to market globalization and recurrent
food safety issues (Leal et al., 2015). With advancements in trans-
portation and storage technologies, aquatic products, rich in omega-3
fatty acids, essential amino acids, and high-quality protein (Tacon &
Metian, 2013), have become integral to the global food market (Kim
et al., 2015). Among these, Larimichthys crocea (LYC), belonging to the
Perciformes order and Sciaenidae family, is an economically significant

marine fish species in East Asian countries, such as China, South Korea
and Japan (Ao et al., 2015; Liu et al., 2020). It is highly prized by
consumers for its delicious taste and superior nutritional value (Ma
et al., 2021). However, variations in regional environments, farming
methods, and genetic strains can significantly impact LYC’s nutritional
quality and flavor. These disparities result in price fluctuations across
production regions, leading to concerns about potential economic fraud
regarding food origin (Zheng et al., 2024). Hence, the development of
authentication techniques for LYC’s origin is paramount to safeguard its
regional brand and product characteristics.
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Currently, a diverse array of analytical techniques is utilized in
authenticating the geographical origin of food products, including DNA
fingerprinting, nuclear magnetic resonance (NMR), near infrared spec-
troscopy (NIR), stable isotope analysis, and modern mass spectrometry
technology (Amaral, 2021). For instance, Schütz et al. employed Fourier
transform near infrared spectroscopy (FT-NIR) to successfully identify
101 milled grain maize samples originating from five distinct countries
(Schütz et al., 2022). Dou et al. utilized gas chromatography–mass
spectrometry (GC–MS) to determine the geographical origin of 161
camellia oil samples gathered from China’s primary production regions,
based on fatty acid profiles (Dou et al., 2024). Furthermore, Luo et al.
employed multi-element and stable isotope analysis to discern the ori-
gins of 164 commodity crabs collected from eight different sites across
China (Luo et al., 2020). Although these techniques offer remarkable
accuracy in sample analysis, they often require intricate pre-treatment
and extraction processes prior to sample introduction, coupled with
sophisticated data processing procedures. This complexity poses signif-
icant challenges in achieving high-throughput analysis of aquatic
products within the supply chain, thereby necessitating the exploration
of alternative methods that can offer both accuracy and efficiency.

Rapid evaporative ionization mass spectrometry (REIMS) emerges as
a pioneering ambient mass spectrometry technique, enabling swift in-
situ analysis and authentication of food products (Black et al., 2017;
Ross et al., 2021). For instance, Rigano et al. harnessed iKnife-REIMS
technology to rapidly identify pistachio nuts from various geograph-
ical origins and varieties (Rigano et al., 2020). Liu et al. employed sol-
dering iron-based REIMS to investigate the geographical traits of
sorghum samples from China’s major production areas (Liu et al., 2022).
REIMS eliminates the need for sample preparation, streamlining data
acquisition, analysis, and precise sample identification, all within a
matter of seconds. This method involves direct ablation of biological
tissues using sampling devices, followed by their introduction into the
mass spectrometer for analysis (Barlow et al., 2021). Prior research has
emphasized that aerosols from lipid-rich samples, such as aquatic
products, harbor a wealth of lipid molecular information. When sub-
jected to mass spectrometry, this information can yield distinct lipid
fingerprint spectra, facilitating real-time identification (Shen et al.,
2022). Conventionally, REIMS’ front-end sampling devices include
monopolar electric knives, bipolar forceps, electric soldering irons, and
laser generators. However, devices like monopolar electric knives, bi-
polar forceps, and electric soldering irons generate aerosols through
contact with conductive probes, limiting analysis to samples with suit-
able conductive and physical properties. This constraint, coupled with
the need to replace or clean probes between samples, reduces analysis
efficiency (Cameron et al., 2021). Additionally, these manual sampling
devices introduce a risk of human error. Utilizing a laser generator as the
sampling device for REIMS effectively addresses the aforementioned
challenges. By scanning the sample with a laser beam, it generates
aerosols without the need for direct contact (Genangeli et al., 2019).
Cameron et al. demonstrated this capability by analyzing six commer-
cially available cooking oils and three olive oils originating from pro-
tected production areas under European Union legislation using laser
ablation-REIMS (LA-REIMS). The study achieved a significant separa-
tion of olive oils from three geographically protected Italian production
areas, achieving 100% classification accuracy using random forest
modeling (Cameron et al., 2021). This underscores the potential of LA-
REIMS for high-throughput, automated, and accurate analysis.

After REIMS analysis, significant data volumes are typically gener-
ated, which are then processed through chemometric methods to extract
crucial information, ultimately enhancing food authentication accuracy.
Among these methods, machine learning has emerged as a promising
approach in recent years. Its ability to integrate vast datasets, learn
intricate relationships, and handle complex samples is noteworthy
(Gredell et al., 2020). In comparison to traditional chemometric tech-
niques like principal component analysis (PCA) and orthogonal partial
least squares-discriminant analysis (OPLS-DA), machine learning

demonstrates greater sensitivity to subtle data variations (Goyal et al.,
2022). The integration of REIMS analysis with machine learning algo-
rithms, such as support vector machine (SVM), k-nearest neighbor al-
gorithm (KNN), naive Bayes (NB), and neural networks (NN), has shown
remarkable success in authenticating food products with high accuracy
(Song et al., 2024). However, the application of REIMS lipid finger-
printing coupled with machine learning techniques to determine the
origins of aquatic products, especially LYC, remains uncommon. Further
research in this area holds the potential to advance authenticity analysis
for aquatic products and facilitate the implementation of quality, safety
supervision, and traceability systems for these commodities.

In this study, a commercial diode blue laser generator was employed
as a sampling device to pioneer a novel LA-REIMS methodology. To
evaluate its performance, a comparative analysis was conducted against
the traditional iKnife-REIMS approach. Notably, the integration of this
technology with machine learning algorithms enabled the successful
detection and precise classification of LYC from diverse geographical
origins. This research offered a significant contribution, providing a
valuable reference for automating the detection and expedited analysis
of the authenticity of aquatic food products with regards to their
geographic origin.

2. Materials and methods

2.1. Materials and reagents

Chromatographic-grade reagents, comprising methanol and aceto-
nitrile, were procured from Merck (Darmstadt, Germany). Additionally,
leucine enkephalin, serving as the internal standard with a purity of
≥97%, was purchased from Sigma-Aldrich (St. Louis, MO, USA). High-
purity water, boasting a resistivity of 18.2 MΩ⋅cm at 25 ◦C, was
sourced from the Millipore Milli-Q water system (Bedford, MA, USA).
The LYC samples, with an average body weight of 450.0 ± 50.0 g, were
procured from reliable local merchants in various regions across China,
including Zhoushan, Taizhou, and Wenzhou in Zhejiang Province;
Ningde in Fujian Province; and Weihai and Qingdao in Shandong
Province. Over a two-year period, five batches of samples were collected
annually from each of these six origins, with each batch consisting of six
parallel samples. All samples, in their original physical state, were
placed in polyethylene bags and stored in a freezer at − 80 ◦C to ensure
prompt testing. To mitigate the potential negative impacts of seasonal
and hydrological variations on water quality parameters, including
temperature, dissolved oxygen, pH, salinity, and light intensity, and to
enhance the model’s generalizability, the samples were procured
annually for two consecutive years. Notably, a minimum interval of one
month was maintained between each batch. For each batch, three LYC
samples of comparable quality, originating from different production
areas, were acquired as parallel specimens for rigorous testing. Before
commencing the analysis, the frozen LYC samples were thawed at room
temperature, followed by the careful removal of scales, skin, and in-
ternal organs. The remaining muscle tissue was delicately rinsed with
high-purity water to ensure its purity. For testing, two rectangular pieces
of dorsal muscle, each measuring 2× 4 cm, were excised from both sides
of the fish.

2.2. REIMS analysis

The chemical fingerprints of the samples were captured utilizing the
REIMS analysis system from Waters Co., Ltd. in Beijing, China. This
system featured a REIMS ionization source that was orthogonally
mounted to the interface of a quadrupole time-of-flight (QTOF) mass
spectrometer (Xevo G2-XS, Waters Co., Ltd., Milford, MA). For sample
acquisition, a laser generator (K6 laser engraving machine, Shanghai
DiaoTu Industrial Co., Ltd.) and an iKnife device (WSD151, Weller,
Germany) were employed. The laser generator was affixed to a robotic
arm, enabling precise adjustment of its position and angle to optimize
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ionization efficiency. Operating at a wavelength of 450 nm and a power
of 3 W, the laser possessed a spot diameter of 300 μm with a step size of
50 μm. The scanning area was set to a rectangular shape with di-
mensions of 8 × 4.5 mm, and the scanning rate was maintained at 25
mm⋅s− 1, ensuring thorough and efficient sample analysis.

The iKnife device comprised a monopolar cutting mechanism
equipped with a shortened knife blade of approximately 6 mm in length,
operating in cutting mode at a power setting of 25 W. Each sampling
cycle lasted 3 s, with the samples being cut repeatedly 5–7 times,
interspersed with a 20-s interval between each cut. The resulting ionized
aerosol was efficiently drawn into the REIMS source by a Venturi pump
powered by 2 bar through a polytetrafluoroethylene (PTFE) tube. To
mitigate background spectral interference, enhance signal intensity, and
provide a reliable internal reference peak for lock-mass calibration, an
auxiliary solvent was employed. Specifically, a 2-propanol solution
containing 0.2 ng⋅μL− 1 of leucine-enkephalin (m/z 554.2615) was
injected into the REIMS source via a stainless-steel capillary (1/16′′outer
diameter, 0.002′′ inner diameter) at a flow rate of 0.1 mL⋅min− 1. This
solution mixed with the aerosol prior to entering the mass spectrometer.
The REIMS analysis was conducted in negative ion mode, with the
analysis range set tom/z 200 to 1000, ensuring comprehensive coverage
of the desired chemical fingerprints.

2.3. Data analysis

After background subtraction and centering using MassLynx soft-
ware (version 4.1, Waters, UK), the raw data of REIMS was exported in .
txt format. The LYC samples collected fromWeihai, Qingdao, Zhoushan,
Taizhou, Wenzhou, and Ningde were designated as WH-IK, QD-IK, ZS-
IK, TZ-IK, WZ-IK, and ND-IK for the iKnife-REIMS method, and WH-
LA, QD-LA, ZS-LA, TZ-LA, WZ-LA, and ND-LA for the LA-REIMS
method, based on the respective sampling technique. The suffixes ‘IK’
and ‘LA’ represent the iKnife-REIMS and LA-REIMS methodologies. In
the processing of iKnife-REIMS data, the five scans (technical replicates)
of the total ion current (TIC) were consolidated to generate a unique
fingerprint for each sample. Conversely, for LA-REIMS data, 15-s de-
tections in the TIC were accumulated to create the fingerprint for each
sample. The structural identification of characteristic ions was achieved
through a combined approach utilizing the LIPID MAPS prediction tool
(http://www.lipidmaps.org/tools/index.html) and MS/MS analysis.
The relative abundance of ions in the sample fingerprint was calculated
via peak area normalization. Microsoft Excel software was employed to
determine the mean value and standard deviation of the samples.
TBtools software was used to create UpSet plots, while SIMCA-P 14.1
(Umetrics, Umea, Sweden) was utilized for unsupervised PCA and su-
pervised OPLS-DA for multivariate statistical analysis. Additionally,
SPSS 23.0 software was applied to perform linear discriminant analysis
(LDA), validating the co-classification performance of multiple signifi-
cantly different ions.

Based on LA-REIMS data, a classification model for LYC originating
from diverse locations was developed using machine learning tech-
niques in MATLAB 2022a (MathWorks Inc., Natick, USA). This process
encompassed crucial steps such as model selection, optimization, feature
engineering, and validation, as outlined by Cui et al. (2023). Six popular
machine learning classifiers were chosen: decision trees (DT), discrim-
inant analysis (DA), support vector machines (SVM), K-nearest neigh-
bors (KNN), Naive Bayes (NB), and neural networks (NN). Before
initiating model development, the dataset was randomly partitioned
into a training set comprising 80% of the samples (6 sets, each with 24
fingerprint spectra) and a validation set containing the remaining 20%
of the samples (6 sets, each with 6 fingerprint spectra). The model’s
establishment, refinement, and feature engineering were conducted
through rigorous 10-fold cross-validation. The performance of the model
was assessed using a confusion matrix and by calculating the model
accuracy, as defined in Eq. (1). This evaluation process provided a
comprehensive understanding of the model’s discriminatory capabilities

and its effectiveness in classifying LYC samples from different origins.

Accuracy =
All true classification

All classification
×100 (1)

When discussing classification performance, “Accuracy” refers to the
success rate of correctly identifying instances. “All true classification”
signifies the instances that have been accurately classified across all
classes, whereas “All classification” encompasses both accurately and
inaccurately classified instances from all classes.

The detailed process of developing a machine learning model
involved several key steps. Initially, a Bayesian optimizer was employed
to model and scrutinize the optimization potential of six chosen classi-
fiers: DT, DA, SVM, KNN, NB, and NN. After 30 iterations, the hyper-
parameters that resulted in the minimum classification error were
deemed optimal for each model (Bischl et al., 2023). Subsequently,
under these optimized hyperparameters, the performance of the models
was gauged based on their accuracy on the training set, leading to the
selection of the top three models with the highest accuracy for further
examination. Moving forward, two from feature engineering - feature
extraction and feature selection - were applied to diminish the feature
dimensionality, thereby preventing model overfitting. Specifically, for
feature extraction, the PCA function within the classification learner was
leveraged for dimensionality reduction via PCA, focusing on extracting
the most informative information based on variance. The number of
principal components was chosen based on the criterion of capturing
95% or 99% of the total variance (Hasan & Abdulazeez, 2021). On the
other hand, for feature selection, the Chi2 feature ranking algorithmwas
utilized by the classification learner. The accuracy and robustness of the
resulting classification models were then assessed by retaining only the
top 5%, 10%, 15%, and 20% of the features (Liu et al., 2019). Finally,
taking into account the accuracy on both the training and testing sets as
well as the training time, the optimal model for each classifier was
determined. To address potential sampling bias, the original dataset
underwent 10 random splits during the model optimization and vali-
dation process. A rigorous evaluation was then conducted through 50-
fold cross-validation on each of the resulting 10 pairs of training and
testing datasets. This comprehensive evaluation yielded the average
accuracy and training time for each of the optimal models.

3. Results and discussion

3.1. Comparison of the sampling performance of iKnife-REIMS and LA-
REIMS

3.1.1. Comparative analysis of thermal injury organization
Fig. 1 presented the macroscopic images of thermal injury in the

muscle tissue of LYC after undergoing iKnife-REIMS and LA-REIMS. In
Fig. 1A, the tissue injuries resulting from iKnife sampling exhibited
variations in length, width, and depth, despite attempts to standardize
the ionization time. Notably, the presence of prominent scorch marks at
the sampling site edges indicated substantial impact on surrounding
tissues. Conversely, Fig. 1B showcased the tissue injuries caused by laser
sampling, which exhibited consistent sampling range and depth, with
shallower wounds and minimal damage to the tissue surrounding the
sampling point. The laser beam employed in this study inflicted less
thermal damage to the tissue due to its narrower width compared to the
iKnife blade. Additionally, the commercial laser generator had a lower
ionization power, resulting in reduced tissue ablation. Consequently, the
aerosol generated during LA-REIMS sampling was also diminished.
These observations indicated that laser sampling may serve as a more
precise and efficient method in practical applications (Genangeli et al.,
2019).

3.1.2. Comparative analysis of signal stability and repeatability
The performance of the proposed method was rigorously evaluated

in terms of accuracy and reproducibility, encompassing both intra-day
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and inter-day precision. As a representative case, LYC samples from
Taizhou were employed, with the characteristic ions m/z 327.2337,
391.2277, and 790.5444 serving as key indicators. For intra-day preci-
sion, errors were propagated from six duplicate ionizations of fish
samples within the same batch, ensuring consistency. To assess inter-day
precision, the samples were analyzed across three consecutive days. The
findings were summarized in Table 1. The LA-REIMS intra-day accuracy
(RSD) ranged from 3.08% to 7.71%, while the inter-day reproducibility
hovered between 4.92% and 9.23%.The iKnife-REIMS intra-day preci-
sion (RSD) spanned from 3.70% to 9.01%, and its inter-day precision
(RSD) ranged from 6.02% to 9.68%. Notably, LA-REIMS exhibited
comparable intra-day and inter-day precision to iKnife-REIMS, with
even lower values. This likely attributed to its automation, mechaniza-
tion, and high controllability of sampling time, speed, and depth.

3.2. Analysis of lipid phenotypic differences

The characteristic REIMS fingerprints of LYC originating from Wei-
hai, Qingdao, Zhoushan, Taizhou, Wenzhou, and Ningde, sampled using
both laser and iKnife techniques, were depicted in Fig. 1C and D. Upon
ionization by these two sampling devices, the lipid fingerprint profiles of

LYC from various origins exhibited considerable overlap, indicating no
significant differences in ion composition. However, minute variations
in the abundances of some ions were observed. This could be attributed
to the high degree of similarity in the composition of muscle lipids
within the same fish species, whereas variations in growing waters,
diets, and other factors might result in minor differences in muscle
lipids.

The lipid ion phenotypes corresponding to all fingerprint profiles
were consolidated and analyzed, yielding a substantial matrix dataset
encompassing 800 feature ions (m/z bins) and 360 samples (2 sampling
devices × 6 origins × 2 years × 5 batches × 3 parallels). The relative
abundance of these feature ions was used for quantification. The Upset
plot was employed to compare the lipid fingerprint profiles of all sam-
ples based on the detected m/z of ions. As depicted in Fig. 1E and F, LA-
REIMS detected 798 features, accounting for 99.75% of the total, while
iKnife-REIMS detected 773 features, representing 96.63% of the total.
These results highlighted the high similarity in the lipid phenotype data
of LYC from various origins obtained by both detection methods. Spe-
cifically, in LA-REIMS detection, there was an overlap of 411 ions in the
lipid phenotype data of LYC from the six origins. Conversely, in iKnife-
REIMS detection, 290 ions were common across LYC from all six loca-
tions. To gain further insights into the differences in lipid phenotypes at
the molecular composition level among LYC from six distinct
geographical origins, the features were sorted based on their relative
abundance. Subsequently, the top 10 ions and their rankings in terms of
relative abundance were summarized in Table S1 for each sample. In
addition, the specific chemical structures of the identified features were
determined. Notably, within the m/z range of 250–330 in Fig. 1C and D,
fatty acid ion signals were prominently observed and identified as the
[FA − H]− form (Cui et al., 2021). These [FA − H]− signals exhibited
remarkably high abundance across all the lipid fingerprints of LYC.
Among the LYC samples, m/z 327.2337, corresponding to [FA22:6 −

H]− , showed the highest relative abundance, followed by m/z 281.2505

Fig. 1. Tissue damage after iknife-REIMS (A) and LA-REIMS (B) sampling； representative fingerprints of LYC from different origins detected by LA -REIMS (C) and
iKnife -REIMS (D); UpSet plot of lipid phenotypes of different LYC detected by (E) LA-REIMS and (F) iKnife-REIMS.

Table 1
Validation of intra-day and inter-day accuracy of iKnife-REIMS and LA-REIMS
with Taizhou LYC samples.

Method m/z Intra-day accuracy Inter-day

Abundance(%) RSD Abundance(%) RSD

iknife-REIMS 327.2337 14.32 ± 1.29 9.01 15.09 ± 1.46 9.68
391.2277 0.81 ± 0.03 3.70 0.83 ± 0.05 6.02
790.5444 1.25 ± 0.08 6.40 1.12 ± 0.09 8.04

LA-REIMS 327.2337 12.45 ± 0.96 7.71 13.32 ± 1.23 9.23
391.2277 1.30 ± 0.04 3.08 1.22 ± 0.06 4.92
790.5444 1.59 ± 0.05 3.14 1.78 ± 0.10 5.62

W. Lu et al.
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([FA18:1 − H]− ), m/z 255.2339 ([FA16:0 − H]− ), and m/z 279.2338
([FA18:2 − H]− ). This finding aligned with previous research by Ma
et al., who analyzed the fatty acid composition of LYC using gas chro-
matography (Ma et al., 2021). However, a notable difference was that
DHA (docosahexaenoic acid) exhibited the highest relative abundance
in our study, while Ma et al. reported FA16:1, FA16:0, and FA18:2 as the
top three fatty acids. This discrepancy could be attributed to the fact that
the [FA − H]− signal in the REIMS lipid fingerprint may originate not
only from the ionization of free fatty acids but also from the fragmen-
tation of acyl chains in phospholipids during the ionization process. The
DHA acyl chains in marine phospholipids are predominantly positioned
at the sn-2 position of the glycerol backbone. This specific location
renders them more prone to fragmentation during the REIMS ionization
process, thereby generating [RCOO]− ions. This uneven fragmentation
pattern is likely a significant contributor to the observed differential
phenomenon (Cui et al., 2021; Song et al., 2020). Additionally, among
the ions exhibiting higher abundance, PC, PE, and PI were detected.
Their chemical structures were identified using the LIPIDMAPS search
library and MS/MS analysis. For instance, considering the ion with m/z
790.5444, a preliminary inference based on the LIPIDMAPS search with
a minimum mass difference of ±0.01 Da suggested it to be [PE40:6 −

H]− . The MS/MS spectrum of this ion (Fig. S1) revealed characteristic
fragment ions such as m/z 279 ([R18:2COO]− ), m/z 281 ([R18:1COO]− ),
m/z 283 ([R18:0COO]− ), m/z 301 ([R20:5COO]− ), m/z 303
([R20:4COO]− ), m/z 327 ([R22:6COO]− ), and m/z 329 ([R22:5COO]− ).
These fragments enabled an initial determination of a partial fatty acyl
structure. Consequently, it can be inferred that the ion at m/z 774 cor-
responds to combinations such as PE18:0/22:6, PE18:1/22:5, PE18:2/
22:4, PE20:1/20:5, and PE20:2/20:4. An analysis of the top ten most
abundant ions revealed that FA16:0, FA18:0, FA18:1, FA22:6, and their
corresponding acyl chains exhibited higher abundances in LYC samples
originating from all six tested locations, regardless of the specific lipid
molecules. These findings were consistent with the typical lipid
composition observed in marine fish species (Fernandes et al., 2014; Li
et al., 2011).

In summary, the REIMS outcomes closely aligned with traditional
mass spectrometry approaches in elucidating the lipid composition of
LYC, demonstrating the proficiency of the LA-REIMS technology intro-
duced in this study for achieving dependable lipid fingerprinting
extraction results. Nevertheless, despite the ability of REIMS lipid fin-
gerprints to distinguish LYC samples originating from various
geographical locations, the fingerprints and associated datasets exhibi-
ted only subtle phenotypic variations. Consequently, to ensure precise
qualitative classification of LYC samples, it was imperative to combine
REIMS lipid fingerprinting with complementary analytical
methodologies.

3.3. Multivariate statistical analysis

Multivariate statistical analysis was performed on the lipid finger-
print data of LYC samples obtained from the iKnife-REIMS and LA-
REIMS.

3.3.1. PCA analysis
The chemometric comparison of lipid fingerprints acquired using

two different sampling methods in LYC was conducted to assess their
similarity. After computing the average relative abundance of lipid
features in each sample group, the unique lipid fingerprint profiles for
each set of samples were analyzed. Fig. S2 showcased the PCA score plot
encompassing 12 sample sets derived from the two sampling ap-
proaches. Here, 23 principal components contributed to 74.7% of the
total variance, with PC1 and PC2 accounting for 21.70% and 9.23%,
respectively. Notably, samples from ZS-IK and ND-LA exhibited outlier
tendencies, while the remaining sample groups displayed a higher de-
gree of clustering. The clustering heatmap presented in Fig. S3 visually
depicted the 12 lipid fingerprints. The normalized relative abundance of

each lipid feature was represented by the color intensity of the heatmap
rectangles, while the horizontal dendrogram highlighted the similarity
and clustering patterns among the samples. Furthermore, to quantify the
similarity between LA-REIMS and iKnife-REIMS technologies in gener-
ating lipid fingerprints, spectral similarity indices (SF) were employed.
A SF value closer to 1 indicates a higher degree of similarity in mass
spectra. As indicated in Table S2, all SF values exceeded 0.9000, sug-
gesting a relatively minor difference between the detection data ob-
tained using LA-REIMS and the traditional iKnife-REIMS method.
Consequently, the novel LA-REIMS technology developed in this study
exhibited comparable sampling performance to the established iKnife-
REIMS approach.

Fig. 2A illustrated the PCA analysis of the iKnife-REIMS data. Here,
the first seven principal components (PCs) cumulatively explained
53.2% of the variance, with PC1 to PC7 accounting for 26.30%, 11.20%,
4.20%, 3.39%, 3.05%, 2.72%, and 2.43% respectively. The score plot
revealed that, apart from the ZS-IK samples exhibiting notable outlier
tendencies, the remaining five samples exhibited a pronounced clus-
tering pattern. This clustering poses challenges for PC1 and PC2 in
effectively categorizing the samples. Fig. 2B presented the PCA analysis
of LA-REIMS data obtained from LYC samples of diverse origins. The
first eight PCs accounted for a cumulative variance of 52.2%, with PC1
to PC8 explaining 13.90%, 11.80%, 6.70%, 5.34%, 4.92%, 4.12%,
3.44%, and 1.89% respectively. In the LA-REIMS score plot (Fig. 2B), the
high overlap of features shared by samples from various origins, totaling
411 (Fig. 1E), results in significant overlap among all six sample groups.
Despite this overlap, samples originating from the same location still
exhibited clustering tendencies, indicating the potential for intra-group
classification.

The lipid fingerprint spectra of LYC samples originating from diverse
geographical locations, when analyzed using both iKnife-REIMS and LA-
REIMS techniques, displayed a remarkable degree of similarity. This
similarity was quantitatively assessed through spectral similarity
indices, which were summarized in Table S3 for iKnife-REIMS and
Table S4 for LA-REIMS. Specifically, in the iKnife-REIMS analysis, the
spectral similarity indices between ZS-IK and the other five LYC sample
groups ranged from 0.8318 to 0.8803, while all other groups displayed
indices exceeding 0.9. Similarly, LA-REIMS analysis consistently
revealed fingerprint spectra similarity indices of LYC samples from
various geographical origins to be >90%. These findings, coupled with
PCA analysis, indicated a high degree of lipid phenotyping similarity
among LYC samples regardless of their geographical origin.

3.3.2. OPLS-DA analysis
Supervised OPLS-DA was utilized to categorize the lipid phenotyping

data of LYC samples acquired through two distinct sampling methods. In
the OPLS-DA analysis of iKnife-REIMS-detected samples, the combina-
tion of 5 principal components (PCs) and 12 orthogonal components
accounted for 84.9% of the cumulative variance, with PCs 1–5 indi-
vidually explaining 19.7%, 18.8%, 17.4%, 16.0%, and 13.1% of the
variance. Notably, the OPLS-DA model exhibited a significantly higher
explained variance compared to the corresponding PCA model on the
same dataset. This superiority is attributed to the orthogonal rotation of
data projection employed by OPLS-DA, which enables accurate reclas-
sification of initially scattered samples (i.e., those beyond the 95%
confidence interval in PCA clustering) (Boccard & Rutledge, 2013).
Consequently, the number of samples correctly assigned to their
respective groups increased, enhancing the clustering accuracy of sam-
ples belonging to the same species. The score plot generated using the
first two PCs (Fig. 2C) effectively showcased the distinct classification of
QD-IK, ZS-IK, and TZ-IK sample groups, while a minor overlap was
observed among the WH-IK, WZ-IK, and ND-IK groups. The permutation
test with 100 iterations (Fig. 2D) yielded a |R2| value of 0.3864 and a |
Q2| value of 0.4395, suggesting that the model was robust, with low
overfitting risk and excellent predictive power.

In the OPLS-DA analysis of LA-REIMS-detected samples, five
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principal components (PCs) and seven orthogonal components collec-
tively accounted for 82.7% of the cumulative variance. Specifically, PCs
1–5 explained 18.3%, 18.3%, 18.1%, 15.2%, and 12.7% of the variance,
respectively. When examining the score plots (Fig. 2E) generated based
on the first two PCs, it was observed that while the clustering of sample
points within the same group was slightly more dispersed compared to
Fig. 2B, the between-group differences were still discernible. Notably,
only the WH-LA and TZ-LA groups exhibited a relatively higher degree
of overlap. The permutation test conducted with 100 iterations (Fig. 2F)
revealed a |R2| value of 0.1920 and a |Q2| value of 0.3005. These results
indicated that the model was not overfitted and possesses a satisfactory
predictive capability, similar to the findings from the previous analysis.

The aforementioned analysis revealed that the OPLS-DA models
employed for both sampling methods achieved a model fit of <85% in

classifying LYC samples based on their geographical origins. Notably,
the score plots exhibited considerable overlap among sample points,
indicating that while the OPLS-DA model surpassed PCA in perfor-
mance, it still fell short of providing satisfactory results in distinguishing
LYC samples from different geographical origins.

3.3.3. Significant difference ion analysis
Utilizing the OPLS-DA analysis, we identified ions with VIP values

exceeding 1 as significant difference ions (Chen et al., 2023). Subse-
quently, we performed an analysis using the OPLS-DA model on the
fingerprint spectra acquired through two distinct sampling methods,
leading to the identification of 25 significant different ions for iKnife-
REIMS and 29 for LA-REIMS. The corresponding m/z ratios and VIP
values for these ions were compiled in Table 2.

Fig. 2. PCA analysis of iKnife-REIMS (A) and LA-REIMS (B) on LYC from different origins; OPLS-DA analysis of LYC from different origins detected by iKnife-REIMS
(C) and its substitution test (D), and OPLS-DA analysis of LYC from different origins detected by LA-REIMS (E) and its substitution test (F).
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Table 2
The VIP value of remarkable differential ions.

Measured
ion (m/z)

Calculated
Value

Mass
Error
(ppm)

TC:
DB

VIP value Characteristic MS2 ions Comments

iKnife-
REIMS

LA-
REIMS

221.2391 221.2378 5.88 18:1 [RCO − CO2]− – 2.2229
222.1460 – – – – – 2.0984 Speculated to be the isotope peak of

m/z 221.2391
223.2540 223.2535 2.24 18:0 [RCO − CO2]− – 1.3455
240.2076 – – – – – 1.6990 Unable to identify at present.
241.2175 241.2165 4.01 15:0 [FA − H]− – 1.0385
253.2183 253.2165 6.95 16:1 [FA − H]− 4.9042 2.6009
255.2339 255.2322 6.63 16:0 [FA − H]− 10.4480 11.6874
256.2383 – – – – 1.9553 2.4885 Speculated to be the isotope peak of

m/z 255.2322
279.2338 279.2322 5.71 18:2 [FA − H]− 11.3435 12.2440
280.2345 – – – – 2.0643 2.2607 Speculated to be the isotope peak of

m/z 279.2322
281.2505 281.2478 9.47 18:1 [FA − H]− 9.4495 11.0270
282.2706 – – – – 2.4181 2.1823 Speculated to be the isotope peak of

m/z 281.2478
283.2657 283.2635 7.80 18:0 [FA − H]− 3.7277 7.3512
301.2192 301.2173 6.31 20:5 [FA − H]− 3.6399 3.0464
302.2171 – – – – 1.6650 1.3094 Speculated to be the isotope peak of

m/z 301.2173
303.2343 303.2330 4.25 20:4 [FA − H]− 4.6325 6.0775
304.2420 – – – – – 1.1730 Speculated to be the isotope peak of

m/z 303.2330
309.2826 309.2799 8.71 20:1 [FA − H]− 1.0547 –
327.2337 327.2330 2.11 22:6 [FA − H]− 15.9422 11.1693
328.2510 – – – – 4.8705 4.4345 Speculated to be the isotope peak of

m/z 327.2337
329.2504 329.2486 5.47 22:5 [FA − H]− 4.3699 4.1826
330.2551 – – – – 1.2168 – Speculated to be the isotope peak of

m/z 329.2504
337.3127 337.3112 4.33 22:1 [FA − H]− 1.0585 –
339.3291 339.3269 6.39 22:0 [FA − H]− – 1.0171
367.3605 367.3582 6.29 24:0 [FA − H]− – 1.7797
391.2277 391.2269 2.16 16:0 [FA − H +

C3H5O4P]−
1.4975 1.4346

417.2434 417.2425 2.06 18:1 [FA − H +

C3H5O4P]−
1.3450 –

419.2608 419.2582 6.14 18:0 [FA − H +

C3H5O4P]−
1.0259 –

715.4798 715.4791 0.98 38:1 [PC − CHN
(CH3)3]−

– 1.3901 253.2173, 255.2337, 281.2501,
283.2657, 309.2826, 715.4798

Composition of acyl chains: 18:0/
18:1, 16:0/20:1, 16:1/20:0

742.5447 742.5392 7.41 36:2 [PE − H]− 1.0447 – 279.2335, 281.2501, 283.2643,
417.2429, 742.5447

Composition of acyl chains: 18:0/
18:2, 18:1/18:1

745.4481 745.445 4.10 38:6 [PC − NH
(CH3)3]−

1.4510 – 255.2337, 281.2501, 327.2337,
417.2429, 745.4481

Composition of acyl chains: 16:0/
22:6, 18:1/20:5

747.4609 747.4606 0.34 38:5 [PC − NH
(CH3)3]−

– 1.1765 255.2337, 281.2501, 283.2643,
301.2183, 303.2337, 329.2486,
419.2593, 747.4609

Composition of acyl chains: 16:0/
22:5, 18:0/20:5, 18:1/20:4

763.4806 763.4791 2.02 40:5 [PC − CHN
(CH3)3]−

– 2.1332 281.2501, 283.2643, 301.2183,
303.2337, 329.2486, 453.1976,
763.4806

Composition of acyl chains: 18:0/
22:5, 18:1/22:4, 20:0/20:5, 20:1/
20:4

764.5275 764.5236 5.12 38:5 [PE − H]− – 1.4606 253.2173, 255.2337, 279.2335,
281.2501, 283.2657, 301.2183,
303.2337, 307.2655, 329.2486,
764.5275

Composition of acyl chains: 16:0/
22:5, 16:1/22:4, 18:0/20:5, 18:1/
20:4, 18:2/20:3, 18:3/20:2

790.5444 790.5392 6.53 40:6 [PE − H]− 1.0597 2.6948 279.2335, 281.2501, 283.2657,
301.2183, 303.2337, 327.2337,
329.2486, 790.5444

Composition of acyl chains: 18:0/
22:6, 18:1/22:5, 18:2/22:4, 20:1/
20:5, 20:2/20:4

792.5570 792.5549 2.65 40:5 [PE − H]− – 1.2723 281.2501, 283.2657, 301.2183,
303.2337, 309.2826, 329.2486,
792.5570

Composition of acyl chains: 18:0/
22:5, 18:1/22:4, 20:0/20:5, 20:1/
20:4

909.5501 909.5499 0.18 40:6 [PI− H]− 3.2525 – 279.2335, 281.2501, 283.2657,
301.2183, 303.2337, 327.2337,
419.2591, 581.3165, 909.5501

Composition of acyl chains: 18:0/
22:6, 18:1/22:5, 18:2/22:4, 20:1/
20:5, 20:2/20:4

910.5552 – – – – 1.4001 – Speculated to be the isotope peak of
m/z 909.5501

Note: TC: total carbon, DB: double bond. The comments in the column represent speculations on the structures of ions that have not been definitively identified, as well
as the acyl chain compositions of identified phospholipid structures determined through MS/MS analysis.
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3.3.4. LDA analysis
The collaborative classification potential of the significantly

different ions obtained through both REIMS techniques was evaluated
through LDA analysis. For the LDA model constructed using the signif-
icant ions from iKnife-REIMS, five canonical discriminant functions
were formulated, collectively explaining 100% of the total variance.

These functions contributed 74.5%, 13.3%, 6.0%, 4.4%, and 1.7% to the
variance, respectively. When this model was applied to validate the
classification of the original grouped samples, it achieved an accuracy
rate of 95.0% (Table S5). Similarly, for the LDA model based on the
significant ions detected by LA-REIMS, five canonical discriminant
functions were established, collectively explaining 100% of the total

Fig. 3. The hyperparameters optimization of six machine learning classifiers: (A) DT, (B) DA, (C) NB, (D) SVM, (E) KNN and (F) NN classifiers.
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variance. These functions contributed variances of 39.6%, 29.8%,
22.2%, 5.5%, and 3.0%, respectively. When this model was used to
validate the original categorized samples, it achieved an accuracy rate of
97.8% (Table S6).

The results demonstrated that LDA models, when employed to clas-
sify LYC based on significant differential ions selected via OPLS-DA, can
attain satisfactory classification accuracy. This consistency was
observed regardless of whether the lipid phenotypic data originated
from iKnife-REIMS or LA-REIMS sampling techniques. Nonetheless, this
study entailed a significant amount of data analysis and relied on the
LDA classificationmethod, which necessitated the utilization of multiple
multivariate statistical analysis models and extensive computational
resources. In light of these challenges, there was a pressing need to
develop chemometric techniques that offer greater convenience and a
high level of automation, specifically for authenticity testing of food
matrices that exhibit high similarity in lipid composition. Furthermore,
a comparative analysis of the classification accuracies between the two
LDAmodels revealed a superior accuracy for the lipid phenotypic data of
LYC from various geographical origins when acquired through LA-
REIMS. Consequently, lipid phenotypic data associated with this tech-
nique was chosen for subsequent analytical steps.

3.4. Machine learning classification model building and optimization

In prior research, experiments employing REIMS analysis paired
with LiveID™ software have predominantly relied on principal
component analysis-linear discriminant analysis (PCA-LDA) on PCA-
reduced data to establish classification models (He et al., 2021; Man-
graviti et al., 2021; Wang et al., 2019). PCA-LDA has proven its effec-
tiveness in categorizing groups exhibiting significant variations in
molecular fingerprint profiles. However, in scenarios where samples
display a high degree of similarity in their molecular fingerprints or
when multiple groups need to be classified concurrently within a single
model, machine learning-based categorization models may outperform
PCA-LDA (Gromski et al., 2015). Consequently, this study delved into
comparing the classification capabilities of six machine learning classi-
fiers for the LA-REIMS lipid fingerprint profile of LYC. Furthermore, it
investigated the suitability of various feature engineering techniques in
reducing the dimensionality of this dataset.

3.4.1. Optimal hyperparameters and optimal classifier selection
In this study, we selected six widely used machine learning classifiers

in food authenticity applications to construct our models: DT, DA, SVM,
KNN, NB, and NN. Prior to model development, we conducted thorough
optimization procedures for each classifier. Fig. 3 outlined the optimi-
zation process and highlighted the optimal hyperparameters for each
model. Subsequently, we successfully constructed six machine learning
classification models using their respective optimal hyperparameters.
The resulting training set accuracy rates for DT, DA, NB, SVM, KNN, and
NN were 89.6% (Fig. 3A), 95.1% (Fig. 3B), 76.4% (Fig. 3C), 97.2%
(Fig. 3D), 97.9% (Fig. 3E), and 97.2% (Fig. 3F), respectively.

3.4.2. Machine learning models optimization
The raw dataset used in this study comprised a 180 (sample size) ×

800 (feature size) matrix, exhibiting a significant imbalance where the
number of predictive factors (features) far exceeded the number of ob-
servations (samples). Such imbalanced datasets are commonplace in
omics analyses and can pose challenges like extended training time and
model overfitting when employing machine learning techniques for
classification model development (Gromski et al., 2015). To ensure the
credibility and scalability of our models, it was imperative to adopt a
rational approach to reduce the feature count.

In this study, we compared two methods for dimensionality reduc-
tion: feature extraction and feature selection. The SVM, KNN, and NN
models, constructed using optimized hyperparameters, were subjected
to various techniques for reducing the data’s dimensionality. The

results, including the test and training accuracies as well as the training
time of these three models, were summarized in Table 3.

Feature extraction was primarily achieved through PCA, a technique
that diminished data dimensionality by transforming features into a
reduced set of principal components. PCA accomplished this by
capturing the covariation of feature variables, and the resulting prin-
cipal components were then utilized as a new dataset, effectively
reducing data dimensionality. While the new dataset’s features differ
from the original, they still encapsulate the fundamental data variations.
In this context, PCA (95%) and PCA (99%) referred to the principal
components that account for 95% and 99% of the variance, respectively.
As evident in Table 3 and Fig. S4, following PCA-based dimensionality
reduction, the SVMmodels employing PCA (95%)-SVM and PCA (99%)-
SVM exhibited substantial reductions in model training time compared
to the unreduced SVM model. Specifically, the PCA (95%)-SVM training
time was 4.77 s, comprising only 8.4% of the pre-reduction training
time. However, it was crucial to note that training and test set accuracies
declined after PCA-based dimensionality reduction, with PCA (95%)-
SVM exhibiting a more significant drop. This trend was also observed in
the KNN (Table 3 and Fig. S5) and NN classifiers (Table 3 and Fig. S6),
aligning with the findings of Gredell et al. (2019). The mass spectrom-
etry data, devoid of missing values, exhibited high reliability following
noise reduction and other data processing steps. However, the PCA
dimensionality reduction process may inadvertently eliminate crucial
information necessary for accurate sample classification, thereby
reducing classification accuracy.

Another dimensionality reduction method employed in this study
was feature selection, utilizing a supervised, recursive feature elimina-
tion approach to eliminate redundant features from the dataset. Among
the various feature selection methods available, Filters, a pre-modeling
data processing technique, emerged as a suitable choice when
comparing different independent classifiers (Li et al., 2017). This
method took into account feature dependencies, resulting in lower
computational complexity and being agnostic to specific machine
learning algorithms. Consequently, the features selected by this method
could be effectively utilized across a range of classifiers. For data

Table 3
The accuracy of training and test sets and the training time of the SVM, KNN and
NN model after data dimension reduction.

Model Dimension
reduction
method

Training set
accuracy
rates (%)

Training
time (s)

Test set
accuracy
rates (%)

Feature
numbers

SVM No dimension
reduction

97.2 56.53 97.2 800/800

PCA(95%) 91.7 4.77 88.9 15/143
PCA(99%) 95.1 6.62 91.7 57/143
Chi2(5%) 95.1 24.41 94.4 40/800
Chi2(10%) 96.5 26.21 97.2 80/800
Chi2(15%) 97.2 26.06 100.0 120/800
Chi2(20%) 97.9 27.46 94.4 160/800

KNN No dimension
reduction

97.9 63.22 97.2 800/800

PCA(95%) 91.7 3.40 86.1 15/143
PCA(99%) 93.1 5.38 91.7 57/143
Chi2(5%) 97.2 22.07 100.0 40/800
Chi2(10%) 98.6 25.18 97.2 80/800
Chi2(15%) 99.3 28.88 100.0 120/800
Chi2(20%) 99.3 29.96 100.0 160/800

NN No dimension
reduction

97.2 59.94 97.2 800/800

PCA(95%) 93.8 7.36 97.2 15/143
PCA(99%) 96.5 10.62 97.2 57/143
Chi2(5%) 97.9 23.27 97.2 40/800
Chi2(10%) 97.9 28.92 94.4 80/800
Chi2(15%) 98.6 38.28 97.2 120/800
Chi2(20%) 97.9 58.24 94.4 160/800
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dimensionality reduction, the chi-square test (Chi2) algorithm provided
by MATLAB’s classification learner was utilized. Chi2 is a commonly
used supervised feature selection method in statistics (Tay & Shen,
2002). After ranking all features using the Chi2 algorithm, four varia-
tions of feature selection were implemented: selecting the top 5%, 10%,
15%, and 20% of features, denoted as Chi2(5%), Chi2(10%), Chi2
(15%), and Chi2(20%), respectively. Based on Figs. S4-S6, the high
degree of similarity between samples posed a challenge during classifi-
cation, potentially leading to the misclassification of LYC samples. No
clear regularity was observed in this regard. However, analyzing Table 3
revealed that the training set accuracy of all models remained consis-
tent, ranging from 95.1% to 99.3%, following Chi2 dimensionality
reduction. Among these models, KNN’s training set dimensionality
reduction results exhibited the most stability. In terms of training time, it
increased gradually as the number of selected features increased.
Nonetheless, the Chi2 algorithm significantly reduced the training time
of all other dimensionality reduction models by more than half, with
exceptions being Chi2(15%)-NN and Chi2(20%)-NN.

The above conclusions collectively indicated that feature selection-
based dimensionality reduction effectively improves the accuracy of
the model and reduces training time.

3.4.3. Optimal machine learning model selection and validation
Based on the criteria of improved accuracy on both training and test

sets compared to models without data dimension reduction, while
minimizing training time, an optimal model was chosen for each clas-
sifier. After rigorous evaluation, three models emerged: Chi2(15%)-
SVM, Chi2(15%)-KNN, and Chi2(5%)-NN. To mitigate sampling bias, 10
independent splits were performed on the training and testing subsets
(Alakwaa et al., 2018). Additionally, 50-fold cross-validation was
implemented to guard against overfitting and provide a more robust
estimate of accuracy (Clark et al., 2020; Gredell et al., 2019). The
summary of results in Table S7 revealed that all three models demon-
strated excellent training set accuracies. Specifically, Chi2(15%)-KNN
achieved the highest training set accuracy of 98.4 ± 0.9%, closely fol-
lowed by Chi2(15%)-SVM (97.3 ± 0.8%) and Chi2(5%)-NN (96.2 ±

2.2%). Notably, these models also exhibited high accuracies on the
testing set, with Chi2(15%)-KNN topping the list at 98.5 ± 1.4%, Chi2
(15%)-NN achieving 97.0 ± 1.4%, and Chi2(15%)-SVM scoring 96.4 ±

2.7%. A comparative analysis of the three optimal models revealed that
Chi2(15%)-KNN significantly surpassed the other two in terms of ac-
curacy, both on the training and testing sets. This finding underscores
the effectiveness of Chi2(15%)-KNN in accurately discerning the
geographical origins of LYC using LA-REIMS detection. Therefore, Chi2
(15%)-KNN stood as the most suitable model for this task. The study also
involved testing an additional 60 samples (10 samples × 6 origins,
purchased in different batches and not used for modeling) to evaluate
the Chi2(15%)-KNN model’s performance. The identification results
were presented in Table S8. It could be observed that the classification
rate achieved 96.7%.

The aforementioned facts clearly demonstrated that, in comparison
to multivariate statistical analysis, machine learning can offer a superior
approach for classifying and identifying LYC from various geographical
origins. This method achieved higher accuracy in a faster, more
convenient, and integrated manner. This underscored the vast potential
of machine learning-guided REIMS pattern recognition technology in
exploring and authenticating the geographical origins of aquatic food
products.

4. Conclusions

This study has introduced a novel LA-REIMS combined with machine
learning algorithms method that aimed at exploring the variances in
lipid phenotypes of LYC sourced from different geographical regions and
achieving an accurate identification of its geographic origin. Addition-
ally, the performance of the developed LA-REIMS technology was

compared with that of the traditional iKnife-REIMS technology for
authenticating similar food matrices. Notably, LA-REIMS demonstrated
comparable sampling performance to iKnife-REIMS. In contrast to the
latter, LA-REIMS reduced tissue thermal damage, enhanced automation,
and was well-suited for high-throughput analyses. To enhance classifi-
cation accuracy, six classifiers were employed in the machine learning
model based on LA-REIMS detection. After dimensionality reduction,
the Chi2(15%)-KNN model exhibited the highest training and testing
accuracies of 98.4 ± 0.9% and 98.5 ± 1.4%, respectively. This study’s
development of a novel LA-REIMS pattern recognition technology,
guided by machine learning principles, enabled accurate, stable, and
high-throughput analysis of samples with reduced thermal damage and
increased automation. Despite the advantages of LA-REIMS, traditional
analytical techniques, such as LC-MS, are still necessary in certain cases,
such as when resolving structural isomers or when absolute quantitative
analysis is required. We propose LA-REIMS as a screening tool for high-
throughput analyses, eliminating the need for complex prior processing.
This LA-REIMS/ML method presents a rapid and intelligent means of
authenticating aquatic products, while providing technical support for
establishing quality and safety supervision and traceability systems
within the aquatic product industry.
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