UHPLC-MS/MS同时检测金枪鱼罐头中BPA、 BADGE、BFDGE及其衍生物

周勇¹,赵凯²,黄鹂¹,蒋玲波¹,王维洁¹,马永龙³

1. 舟山市食品药品检测检验研究院(舟山 316021);

2. 杭州市质量技术监督检测院(杭州 310019); 3. 浙江海洋学院(舟山 316021) 摘要建立了快速检测金枪鱼罐头中BPA、BADGE、BFDGE及其衍生物10种环境激素含量的超高效液相色谱-串联质谱法。样品经C₁₈色谱柱分离,以乙酸铵溶液和甲醇为流动相梯度洗脱,质谱多反应监测(MRM)模式检测, 基质标准校正,外标法定量。结果表明,BPA、BADGE・2HCl及其他环境激素分别在0.5~100 μg/L,0.5~50 μg/L和 0.1~0 μg/L范围内线性关系良好;定量限(以信噪比≥10计)为0.5 μg/kg(BADGE・2HCl为1 μg/kg);在3个加标水平 下10种环境激素的加标回收率为71.32%~96.14%,相对标准偏差为3.19%~6.79%(n=6)。该方法具有优异的灵敏度与 稳定性,满足对金枪鱼罐头中BPA,BADGE、BFDGE及其衍生物的痕量分析检测及准确定量。

关键词 超高效液相色谱-串联质谱;金枪鱼罐头;双酚A (BPA);双酚A-缩水甘油醚 (BADGE) 及其衍生物;双酚 F-缩水甘油醚 (BFDGE) 及其衍生物

Determination of BPA, BADGE, BFDGE and Their Derivatives in Canned Tuna by UHPLC–MS/MS

Zhou Yong¹, Zhao Kai², Huang Li¹, Jiang Ling-bo¹, Wang Wei-jie¹, Ma Yong-long³

1. Zhoushan Institute for Food and Drug Control (Zhoushan 316021);

2. Hangzhou Institute of Calibration & Testing for Quality and Technical Supervision (Hangzhou 310019);

3. Zhejiang Ocean University (Zhoushan 316021)

Abstract An accurate quantitative determination and confirmative method for ten environmental hormone of bisphenol A, bisphenol A diglycidyl ether and bisphenol F diglycidyl Ether and their derivative in canned tuna by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) had been established. The target compounds were analyzed by UHPLC-MS/MS on a C₁₈ column by the gradient elution with methanol and ammonium acetate containing formic acid in a multiple reaction monitoring (MRM) scan mode. External matrix standard solutions were used for the quantitative determination and the calibration curves respectively showed good linearity in the concentration range of 0.5~100 μ /L, 0.5~50 μ g/L and 0.1~20 μ g/L for BPA, BADGE·2HCl and other environmental hormones. The limits of quantification of the ten compounds were 0.5 μ g/kg (BADGE·2HCl gone to 1 μ g/kg) (*S*/*N* ≥ 10); The average recoveries of the ten compounds ranged from71.32% to 96.14% at the spiked levels of 5.0, 20.0 and 100.0 μ g/kg with the relative standard deviations (RSDs) of 3.19%~6.79% (*n*=6). The method was sensitive, stable, and well suitable for the determination of Bisphenol A (BPA) bisphenol A diglycidyl ether and bisphenol F diglycidyl ether and their derivatives in Canned tuna.

Keywords high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS); canned tuna; bisphenol A (BPA); bisphenol A diglycidyl ether (BADGE); bisphenol F diglycidyl ether (BFDGE) and their derivatives

金属罐是目前最主要的食品包装材料之一。由 于食品特有的化学性质,常常在一些食品容器的包 装材料内壁涂上一层耐酸、耐油和耐碱的防腐蚀涂 料^[1]。近年来,在罐头食品,婴儿奶瓶、微波炉饭盒 等食品的包装材料中用聚碳酸酯和环氧树脂作为内涂 层^[2],这些涂层与食品接触时,可能有树脂原料双酚 A(Bisphenol A, BPA),或双酚A-二环氧甘油醚 (Bisphenol A Digly-cidyl Ether, BADGE),双酚F-缩水甘油醚(BFDGE)等单体溶出。 BPA、BADGE和BFDGE均具有拟雌激素活性,双酚A是一种内分泌干扰物。研究表明,BADGE有潜在致癌性且其化学性质不稳定¹³⁻⁴¹,极易从罐头的内涂层向含有油脂或水分的罐头食品中迁移,并生成多种衍生物,这些物质迁移到食品当中进而被人体摄入,会造成人体的内分泌系统、免疫系统和神经系统出现异常,还会严重干扰人类的生殖遗传功能¹⁵⁻⁷¹。欧盟、美国等在食品接触材料中,尤其是婴幼儿制品中禁用双酚A渐成趋势。2005年11月18日欧盟颁布了《关于在

与食品相接触的材料及物品内使用某些环氧衍生物的 法规》(EC/1895/2005号指令)^[8],以加强对包装材料 质量的监管。

目前,国内外也有检测食品中BPA、BADGE、 BFDGE及其衍生物多组分的相关研究报道,最为常见 的分析方法为高效液相色谱--荧光法,但其仅适用于 定量分析,还需结合气相色谱--质谱联用(GC-MS) 技术确证被测物的存在。试验建立了超高效液相色 谱-串联质谱法同时测定金枪鱼罐头食品中的BPA、 BADGE、BFDGE及其衍生物等10种环境激素的痕量 检测方法,省去了GC法的衍生化过程,扩大了线性 范围,同时完成定性和定量分析,方法简便、可靠, 完全满足相关法规的限量要求。

1 试验部分

1.1 仪器与试剂

Agilent 1290 Infinity超高效液相色谱仪:美国 Agilent公司; Agilent6460三重串联四极杆液质联用仪 (LC/QQQ):美国Agilent公司; Milli-Q 超纯水器: 美国Millipore公司; Agilent Poroshell120 EC-C₁₈(3.0 mm×100 mm, 2.7 μm), HITACHI CD6D离心机: 日 本HITACHI公司; 氮气浓缩仪:日本EYELA公司; 超 声波振荡器: KQ-250E,美国

双酚A(BPA),双酚A-二缩水甘油醚 (BADGE),双酚A-(2,3-二羟丙基)缩水甘油醚 (BADGE \cdot H₂O),双酚A-二(2,3-二羟丙基)醚 (BADGE \cdot 2H₂O),双酚A-二(3-氯-2-羟丙基)缩 水甘油醚(BADGE \cdot HCl),双酚A-二(3-氯-2-羟 丙基)醚(BADGE \cdot 2HCl),双酚A-二(3-氯-2-羟 丙基)(2,3-二羟丙基)醚(BADGE \cdot H₂O \cdot HCl), 双酚F-二缩水甘油醚(BFDGE),双酚F-二(2,3-二羟丙基)缩水甘油醚(BFDGE \cdot 2H₂O),双酚F-二(3-氯-2-羟丙基)缩水甘油醚(BFDGE \cdot 2HCl) 标准品:纯度 \geq 95%,Fluka公司;乙酸乙酯:HPLC 级,美国Sigma公司;甲醇:色谱纯,德国Merck公 司;乙酸铵:HPLC级,美国Sigma公司;其他试剂均 为分析纯;试验用水为经Milli-Q净化的超纯水其他试 剂均为分析纯。

1.2 标准溶液的配置

用电子天平分别准确称取BPA、BADGE、BFDGE 及其衍生物各100 mg(精确至0.1 mg)于100 mL容量 瓶中,以甲醇与水(1:1)为溶剂准确配制1 000 µg/ mL储备液,使用时用甲醇与水(1:1)溶液逐级稀 释至所需浓度。储备液于4 ℃下避光储存(可稳定存 放1个月)。

1.3 样品预处理

将罐中所有样品均质机进行均质处理。称取2g样品与5mL乙酸乙酯混合。混合物振荡20min,然后在

超声水浴中超声处理30 min。取出后在8 000 r/min转 速下离心10 min。将全部上清液转移到离心管中,重 复一次,合并上清液,然后氮气吹扫蒸发溶剂。萃取 物重新溶于10 mL甲醇与水(1:1)混合溶剂中,过 滤后进样分析。

1.4 色谱条件

1.4.1 双酚A的色谱条件

Agilent Poroshell120 EC-C₁₈色谱柱(3.0 mm×100 mm, 2.7 μm); 柱温: 40 ℃; 进样量: 5 μL; 流速: 0.4 mL/min; 流动相A为2 mol/L醋酸铵溶液, B为甲醇; 具体梯度洗脱条件见表1。

表1 双酚A的梯度洗脱条件

	时间/min						
	0	4.5	7	7.5	7.6		
CH ₃ COONH ₄ /%	40	10	5	5	40		
CH ₃ OH/%	60	90	95	95	60		

1.4.2 BADGE和BFDGE的色谱条件

Agilent Poroshell120 SB-C₁₈色谱柱(3.0 mm×100 mm, 2.7 μm); 柱温: 40 ℃; 进样量: 10 μL; 流速: 0.4 mL/min; 流动相A为含0.1%甲酸的5 mol/L醋酸 铵溶液, B为甲醇; 具体梯度洗脱条件见表2。

表2 BADGE和BFDGE的梯度洗脱条件

	时间/min					
	0	1	3	6.5	7	
CH ₃ COONH ₄ /%	35	35	30	20	20	
CH ₃ OH/%	65	65	70	80	80	

1.5 质谱条件

1.5.1 双酚A的质谱条件

1.5.1.1 三重串联四极杆质谱(QOQ MS)条件

离子模式:负离子电喷雾模式; ΔEMV: 600 V。

1.5.1.2 电喷雾源(ESI)条件

干燥气体温度:350 ℃;干燥气体流量:9 L/ min;雾化器压力:30 psi;鞘气温度:-380 ℃;鞘气 流量:8 L/min;毛细管电压(-):4 500 V;喷嘴电 压(-):1 500 V;各化合物的质谱采集参数见表3。

表3 双酚A的监测离子及质谱参数条件

化合物	母离子 (m/z)	子离子 (m/z)	裂解电压/V	碰撞电压/V1	加速电压/V	极性
DDA	227.1	133.1	120	24	4	贠
BPA	227.1	212.1	120	16	4	负

1.5.2 BADGE和BFDGE的质谱条件:

1.5.2.1 三重串联四极杆质谱(QQQ MS)条件

离子模式:正离子电喷雾模式;⊿EMV:200 V。 1.5.2.2 电喷雾源(ESI)条件

干燥气体温度:350 ℃;干燥气体流量:9 L/ min;雾化器压力:45 psi;鞘气温度:380 ℃;鞘气 流量:8 L/min;毛细管电压(+):4000 V;喷嘴电 压(+):1000 V;各化合物的质谱采集参数见表4。

化合物	母离子 (m/z)	子离子 (m/z)	裂解 电压/V	碰撞 电压/V	加速 电压/V	极性		
BADGE	358	191.1*	109	9	7	正		
	358	135.1	109	29	7	正		
BADGE • H_2O	376	209.1*	86	9	7	正		
	376	135.1	86	29	7	正		
BADGE • $2H_2O$	394	209.1*	105	9	7	正		
	394	135	105	29	7	正		
BADGE • HCl	394.1	227.0*	106	9	7	正		
	394.1	135	106	29	7	正		
BADGE • 2HCl	430.1	135	91	37	7	正		
	430.1	227.0*	91	9	7	正		
BADGE • $H_2O \cdot HCl$	412	227.0*	106	9	7	正		
	412	135.1	106	33	7	正		
BFDGE	330.3	133.1*	96	9	7	正		
	330.3	163.1	96	5	7	正		
BFDGE • $2H_2O$	366.3	181.1*	92	9	7	正		
	366.3	107.1	92	25	7	正		
BFDGE • 2HCl	402.3	199.1*	96	9	7	正		
	402.3	181	96	17	7	正		
注:*定量离子。								

表4 双酚A-二缩水甘油醚和双酚F-二缩水甘油醚的 监测离子及质谱参数条件

2 结果与讨论

2.1 色谱条件的优化

考察了不同初始浓度、梯度变化率、柱温和流速 等条件下10种环境激素的分离情况,比较了乙腈-水 和甲醇-水2种流动相对目标化合物离子化程度的影 响。以甲醇为有机相,各组分的信号强度比较稳定; 而乙腈为有机相时的信号明显降低,不适合10种组分 的同时检测。可能是由于甲醇为质子给体溶剂,有利 于双酚-二环氧甘油醚产生正离子,而乙腈是受体, 故不如甲醇优越。除考察流动相组成外,还比较了甲 醇-水流动相中加入一定量的醋酸铵和甲酸等添加剂 对目标化合物离子化效率的影响。在流动相中加入5 mol/L醋酸铵有助于消除钠盐的干扰,而加入0.1%的 甲酸有助于待测物母离子峰的形成。试验结果显示, 用甲醇-水(5 mol/L醋酸铵+0.1%甲酸)作流动相时, 各目标化合物的信号强度比较稳定,且峰形均较好。 最终获得了10种物质的最佳分离条件(具体色谱条件 见表1~表2)。

2.2 质谱条件的优化

1) BPA的一级质谱用1 μg/L的BPA标准溶液,以 流动注射方式注入电喷雾(ESI)质谱。由于BPA上 的酚羟基易失去羟基上的氢原子生成[M-H]⁻离子, 因此在ESI负离子模式下灵敏度最好。选择ESI负离子 模式进行一级质谱分析,得到很强的BPA准分子离子 峰*m/z* 227.1,即[M-H]⁻,经二级质谱碰撞后裂解,主 要产生*m/z* 212.1,133.1等一组碎片离子(见图1)。 BPA的准分子离子*m/z* 227.1丢失端基-CH₃形成*m/z*

•292: ____《食品工业》2016年第37卷第3期

212.1离子[M-H-CH₃]; 丢失-C₆H₅OH, 形成*m*/*z* 133.1 离子,得到碎片离子[M-H-C₆H₅OH]; 在BPA二级质 谱图中, *m*/*z* 212.1的离子丰度最大。依据选择离子的 原则,应尽量选择质荷比在高端的离子,以减少干 扰;同时应选择丰度较大的离子,以提高灵敏度。综 合考虑以上两个因素,选择*m*/*z* 212.1为定量离子,完 全消除了杂质峰的干扰。保证了测定的准确性和灵 敏度。

2) BADGE, BFDGE及其衍生物的一级质谱分别 将质量浓度为0.5 μg/L的标准溶液以流动注射方式注 入电喷雾(ESI)质谱,在正离子模式下进行全扫描 以选择适当的分子离子峰和电离方式。结果表明,电 喷雾正离子电离模式下,目标化合物全扫描的准分子 离子[M+NH4]⁺和[M+Na]⁺比较稳定,[M+Na]⁺的离子强 度比[M+NH4]⁺和[M+Na]⁺比较稳定,[M+Na]⁺的离子强 度比[M+NH4]⁺的离子强度大,但[M+Na]⁺的裂解模式 很差,几乎找不到可用的碎片离子。因此试验选用目 标化合物的[M+NH4]⁺为碰撞诱导解离的母离子,对待 测化合物的碰撞能量和各种电压参数进行了优化,各 化合物的离子对和优化后的质谱分析参数见表4。其 中,由于BFDGE存在3种异构体,BFDGE・2HCl存在 2种异构体,故在定量时选用了与定性离子保留时间 一致,响应最高峰的峰面积(见图2)。

选择不同溶剂进行提取效率的比较和研究。根据 目标物的物理性质,选择丙酮、甲醇、乙腈和乙酸乙 酯进行对比。经试验结果比较发现,甲醇和丙酮提取 时,杂质含量比较高,基质干扰相对较大;乙腈和乙 酸乙酯的提取效率都相对比较高,但考虑到样品经过 提取后需要挥干复溶,同时兼顾溶剂毒性以及成本的 角度考量,最终选择乙酸乙酯作为提取溶剂。

2.4 标准曲线和精密度

表5 10种目标物的线性范围、回归方程、相关系数 (r)和峰面积的RSD

目标物	线性范围/ µg・L ⁻¹	回归方程	相关系 数 (r)	相对标准偏 差/% (n=6)
BPA	0.5~100	<i>y</i> =6 788.455 4 <i>x</i> - 1 728.893 7	0.998 8	0.98
BADGE	0.1~20	<i>y</i> =48 410.732 4- 2 071.887 3	0.999 5	0.72
BADGE • H_2O	0.1~20	<i>y</i> =10 394.004 6 <i>x</i> -405.859 1	0.999 4	0.72
BADGE • $2H_2O$	0.1~20	<i>y</i> =6 075.846 5 <i>x</i> -190.027	0.999 2	1.43
BADGE • HCl	0.1~20	<i>y</i> =5 362.875 8 <i>x</i> -162.44	0.999 6	1.07
BADGE • 2HCl	0.5~50	<i>y</i> =444.961 3 <i>x</i> - 38.028 3	0.999 5	1.57
$\begin{array}{c} \text{BADGE} \boldsymbol{\cdot} \text{H}_2\text{O} \boldsymbol{\cdot} \\ \text{HCl} \end{array}$	0.1~20	<i>y</i> =2 789.323 0 <i>x</i> -72.219 8	0.999 1	1.44
BFDGE	0.1~20	<i>y</i> =11 387.971 6 <i>x</i> + 183.940 9	0.999 8	0.22
BFDGE • $2H_2O$	0.1~20	<i>y</i> =3 068.657 5 <i>x</i> -14.422 0	0.999 8	0.51
BFDGE • 2HCl	0.1~20	<i>y</i> =1 821.133 9 <i>x</i> + 32.098 6	0.999 9	0.56

分别量取储备液适量,用甲醇与水(1:1)的 溶液稀释至质量浓度为0.5,1.0,10,50和100 μg/ L的BPA标准工作液及0.1,0.5,1.0,5.0,10.0和 20.0 μg/L的其他标准溶液的混合标准工作液(其中 BADGE・2HCl的质量浓度曲线点为0.1,5,10,20 和50 μg/L)自动进样10 μL,进行HPLC-MS/MS分 析。以目标物在选择反应监测(MRM)模式下的峰 面积(Y)对相应的目标物质量浓度(X,μg/L)使 用外标法绘制标准曲线,并将10 μg/L的BPA, BADGE・2HCl标准工作液及混和标准溶液,连续重 复进样6针,计算峰面积的相对标准偏差,结果见 表5。从表可知,BPA在质量浓度为0.5~100.0 μg/L 时线性良好,相关系数r≥0.998 8。能满足定量分析 的要求。

2.5 样品的测定

采用优化后的分析方法,对即将进入市场的6种品牌的金枪鱼罐头进行随机抽样检测,结果如表6所示。由表6可以看出,样品中BADGE · H₂O,BADGE · 2H₂O,BADGE · 2HCl和BADGE · H₂O · HCl均有不同程度的检出,虽均未超出EC/1895/2005号条例规定的限值,但部分产品检出率仍比较高。

表6 实际样品测定(单位: μg・kg⁻¹)

目标物	样品1	样品2	样品3	样品4	样品5	样品6
BPA	_	_	_	_	_	_
BADGE	_	_	-	_	-	_
BADGE • H_2O	20.93+	10.98+	4.13+	5.49+	20.28+	50.2+
BADGE • H_2O	55.63+	50.99 +	59.93+	89.95+	67.93+	50.98 +
BADGE • HCl	_	_	_	_	_	_
BADGE • 2HCl	2.143+	6.650+	1.398 +	6.6546+	20.049+	8.652+
$\begin{array}{c} \text{BADGE} \cdot \text{H}_2\text{O} \cdot \\ \text{HCl} \end{array}$	15.95+	9.098+	20.038+	20.873+	15.913+	10.917+
BFDGE	_	-	_	_	_	-
BFDGE $\cdot 2H_2O$	_	-	_	_	_	_
BFDGE • 2HCl	_	-	-	_	-	_
注:"-"代表未	检出;"+	⊦"代表	样品被检	出,但含	量低于定	量限。

2.6 回收率、检出限与定量限

根据3倍和10倍信噪比(S/N)分别确定检出限(LOD)和定量限(LOQ)。在阴性样品基质中添加 5,20和100 μg/kg3个水平的混合标准溶液,按1.3节 方法进行预处理,每个水平重复测定6次,得到10种 目标物的回收率,检出限与定量限(见表7)。10种 目标物的检出限为0.2 μg/kg和0.5 μg/kg,定量限为0.5 μg/kg和1.0 μg/kg;且在3个不同加标水平下10种目标 物的回收率分别为71.32%~96.14%,可以满足国内外 金枪鱼罐头中BPA、BADGE、BFDGE及衍生物检测的 要求。

目标物	加标浓度/ µg・kg ⁻¹	加标结果/µg・kg ⁻¹	回收率/%	相对标准偏差% (n=6)	检出限/µg・kg ⁻¹	定量限/µg・kg ⁻¹
BPA	5	4.02	80.4	5.52	0.2	0.5
	20	16.69	83.44	5.12		
	100	88.9	88.9	6.08		
BADGE	5	4.61	92.2	4.1	0.2	0.5
	20	18.48	92.4	5.56		
	100	95.85	95.85	6.79		
BADGE • H_2O	5	3.97	79.3	6.1	0.2	0.5
	20	14.26	71.32	5.58		
	100	73.91	73.91	4.41		

表7 金枪鱼罐头中10种目标物的加标回收率, RSDs, 检出限和定量限

1	y, I	羕
---	------	---

目标物	加标浓度/ µg・kg ⁻¹	加标结果/µg・kg ⁻¹	回收率/%	相对标准偏差%(n=6)	检出限/µg・kg ⁻¹	定量限/ µg・kg ⁻¹
BADGE • $2H_2O$	5	4.12	82.3	6.25	0.2	0.5
	20	16.09	80.43	4.84		
	100	83.81	83.81	4.12		
BADGE • HCl	5	3.71	74.2	5.65	0.2	0.5
	20	14.79	73.94	4.24		
	100	75.85	75.85	4.01		
BADGE • 2HCl	5	4.77	95.4	4.98	0.5	1
	20	19.23	96.14	5.67		
	100	95.28	95.28	4.18		
$BADGE \boldsymbol{\cdot} H_2O \boldsymbol{\cdot} HCl$	5	3.83	76.5	5.98	0.2	0.5
	20	16.48	82.38	4.21		
	100	85.86	85.86	4.77		
BFDGE	5	4.49	89.7	4.66	0.2	0.5
	20	16.9	84.5	4.28		
	100	87.47	87.47	5.05		
BFDGE • $2H_2O$	5	4.77	95.3	4.97	0.2	0.5
	20	18.72	93.61	5.34		
	100	93.78	93.78	4.89		
BFDGE • 2HCl	5	3.76	75.13	5.21	0.2	0.5
	20	17.09	85.44	4.95		
	100	89.24	89.24	3.19		

接表7

3 结论

建立了BPA、BADGE、BFDGE及其衍生物的液质 分析方法。方法简便快速,灵敏度高,其回收率及 重复性能满足日常检测的要求。根据实际样品检测 的情况,发现市售产品中BADGE衍生物有不同程度 的检出,虽未超过相关规定,但部分检出率还是相 对较高,这也为相关部门敲响了警钟,应该引起足够 重视。

参考文献:

- [1] 左莹,禄春强,沈霞,等. 食品罐头内涂层中的BPA, BADGE, NOGE, BFDGE及其衍生物的检测技术研究进 展[J]. 食品工业, 2012, 33(11): 176.
- [2] OLGAP, VICENT Y, NURIA L, et al. Determination of bisphenol diglycidyl ether residues in canned foods by pressurized liquid extraction and liquid chromatography– tandem mass spectrometry[J]. Journal of Chromatography A, 2006(1107): 70–78.
- [3] GRACIELA RARNILO, LAGO VALVERDE, JORGE LAGO, et al. Cytotoxic efectsof BADGE (bisphenol A diglycidyl ether) and BFDGE (bisphenol F diglycidyl ether) on Caco-2 cells *in vitro*[J]. Arch Toxicol, 2006, 80(23): 748-755.
- [4] 李思瑜, 刘兴荣, 黄敏, 等. 环境内分泌干扰物双酚A脱

除方法研究进展[J]. 现代预防医学, 2007, 34(11): 2094-2095.

- [5] GRACIELA RARNILO, LAGO VALVERDE, JORGE LAGO, et al. Cytotoxic efectsof BADGE (bisphenol A diglycidyl ether) and BFDGE (bisphenol F diglycidyl ether) on Caco-2 cells *in vitro*[J]. Arch Toxicol, 2006, 80(23): 748– 755.
- [6] 端正花,朱琳,王平.双酚A对斑马鱼不同发育阶段的毒性 及机理[]].环境化学,2007,26(4):491-494.
- [7] JOSE LUIS V' LCHEZ, ALBERT ZAFRA, ANTONIO GONZ61EZ-CASADO, et al. Determination of trace amounts of bisphenol F, bisphenol A and their digiycidyl ethers in wastewater by gas chromatography-mass spectrometry[J]. Analytica Chimica Acta, 2001(431): 31-40.
- [8] Official Journal of the European Union. Commission Regulation[EC]. No 1895/2005.